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Abstract 
In the past three years, we have addressed and developed CAD tools, design 

methodologies, and architectures for the following topics of VLSI digital signal process- 
ing: high-level transformations and synthesis, discrete wavelet transform, high-speed 
digital subscriber loops, and finite field arithmetic for use in Reed-Solomon coders. 
This report summarizes our results in these areas. Through this research we developed 
fast and efficient algorithms, ILP models, and tools that would reduce the time to 
explore the design space and locate an area optimal design of ASICs for DSP applica- 
tions within a heterogeneous environment. In this project, the phrase "heterogeneous 
architectures" defines any architecture that contains different types of functional units 
(including algorithms and implementation styles) to process the same type operations. 
By utilizing a heterogeneous library, one removes the word size and implementation 
style restrictions and allows the system to explore a much wider design space. Other 
tools and methodologies related to high-level synthesis were also developed. We formu- 
lated a better algorithm to determine the minimum iteration period of any recursive 
DSP algorithm. We developed an exhaustive technique to locate all valid schedules and 
retimings of strongly connected data-flow graphs (DFGs), and we derived ILP models 
for efficient two-dimensional retiming. By extending the folding technique to include 
multirate constructs and developing a new approach to minimize the overall register us- 
age, new and efficient architectures for discrete wavelet transforms using lattice-based 
architectures and tree-structured filter banks were developed. For digital subscriber 
loops, we investigated and characterized different approaches to minimizing the echo 
problem that are inherent with the transmission media. New efficient architectures for 
arithmetic operations within the finite field were developed and implemented. These 
new architectures were used to develop a fast and power efficient Reed-Solomon en- 
coder. In our study of low-power design methodologies, we have developed a novel 
order-configurable architecture for FIR filters. A single chip can be configured as an 
FIR filter with a filter length up to 32 while consuming minimal power. 
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1    Introduction 

The rapid design of high-performance and low-power dedicated digital signal processing 

(DSP) architectures requires appropriate selection of algorithm, architecture, and implemen- 

tation style and usage of efficient synthesis tools. With the additional pressure of designing 

new high-speed architectures or re-designing an existing architecture that are area and power 

efficient in less time, the task becomes even more challenging. This is because to meet the 

new specifications, many new designs may need to be implemented using heterogeneous com- 

ponents where the algorithms and implementation styles used in the design are varied. For 

example at a lower level, there may exist functional units that implement full adders using 

a ripple carry or manchester carry algorithm, and within each alogorithm type there may 

exist adders that have implementation styles that are bit-serial, digit-serial, or bit-parallel. 

With these additional parameters and demands, the design space has become much larger 

and more uneven. Better tools and design methodologies become more important to quickly 

and efficiently search the space in an efficient manner. 

Concurrent to developing tools for design space exploration, one must also investigate 

difficult DSP applications to understand and develop new design methodologies that can be 

extended into the developing CAD tools. By exploring the interaction between algorithm 

and architecture, one is able to gain a deeper understanding of the way different design 

tradeoffs and optimizations impact the final architecture. 

In the past three years, we have addressed and developed CAD tools and design method- 

ologies to perform high-level transformations and synthesis for DSP applications. On a 

parallel track, we have also investigated and developed design methodologies and architec- 

tures for discrete wavelet transforms, echo cancellers for high-speed digital subscriber loops, 

and finite field arithmetic for use in Reed-Solomon coders. Our goals were to develop fast 

and efficient techniques and tools that would reduce the time to explore the design space and 

locate an optimal design of application specific integrated circuits or ASICs for DSP appli- 

cations. This report summarizes our approaches taken to achieve our goals, the algorithms 

that we utilized, and our experimental results that we gathered. 

This report is divided into two main sections: CAD tools and architectures. Within the 



CAD tools section we present the work performed in developing high-level synthesis tools 

(section 2) and other tools that we developed as we addressed the high-level synthesis problem 

(section 3). Under high-level synthesis, section 2.1 describes the Minnesota ARchitecture 

Synthesis (MARS) tool that is based on the loop-list heuristic approach and in section 2.2 

we present our integer linear programming (ILP) models. In the other tools section, we 

present tools that solve problems which are related to the topic of high-level synthesis. We 

developed an algorithm that determines the minimum iteration bound of a data-flow graph 

(DFG) (section 3.1), a method in exhaustively locating all schedules and retimings for a 

given DFG (section 3.2), and a technique to perform two-dimensional retiming (section 3.3). 

In the architectures section, we present our work in developing algorithms and architectures 

that have high-performance, consume less power, and are area efficient for discrete wavelet 

transforms (section 4), echo cancellers for high-speed digital subscriber loops (section 5), 

finite field arithmetic for use in Reed-Solomon coders (section 6), and order-configurable 

FIR filters (section 7). 

CAD Tools 

2    High-Level Synthesis 

In the past ten years, there has been a great deal of activity in developing high-level synthesis 

systems for automatic design of high performance, dedicated architectures, especially for 

digital signal processing (DSP) applications. Many of the more common techniques have 

been covered in tutorials and books [1] -[5]. More recent techniques include [6] -[26]. In 

designing real-time DSP systems, the use of high-level synthesis has become a more common 

and crucial step in the design flow because many real-time applications which require high 

sample rates or low power consumption can only be implemented by dedicated architectures. 

High-level synthesis can be viewed as a series of steps consisting of describing the behavior 

of the system to be designed as separate but interrelated operations (with either a high-level 

language or graph model such as a synchronous data-flow graph (DFG) [27]), selecting and 

allocating hardware resources, scheduling the operations to control time steps, and generating 

the control unit to synchronize the execution of the operations within the final design [1] [2] 



[3]. Of the entire synthesis problem, hardware selection/allocation and scheduling are the 

two most difficult and crucial steps because decisions made here directly affect the final cost. 

Both of these tasks have been shown to be NP-complete [28]; therefore, many schedulers 

have been proposed with varying results and performance. Although heuristic methods can 

generate good results in short CPU time, they cannot guarantee optimal solutions. More 

formalized solutions using integer linear programming (ILP) techniques have been proposed 

[21]-[26] within the last few years. These models tend to be more flexible and are capable 

of generating optimal solutions but they suffer in exponential increases in run times as the 

model constraints become less restrictive. 

Most of the previously developed synthesis systems assume that all same type operations 

will be assigned to one type of functional unit (or processor) (e.g., all addition operations 

will be processed by full adders). With this type of limited library, the solutions generated 

by these systems are not as cost optimal as solutions generated by systems using a library 

that contains multiple functional units for each type of operation. For example, Fig. 1 shows 

a simple DFG that consists of a set of identical nodes and are interconnected into two loops. 

Let us assume that the available library only contains one processor type, PI which has a 

computational delay of 1 time unit (t.u.) and an area cost of 20 units. If the target iteration 

period for this DFG is 5 t.u., one possible processor allocation solution will require two PI 

processors for a total area cost of 40 units and a valid final schedule is shown below: 

time 12    3    4    5 

PU 
Ph 

A    B    C    D    E 
F   G 

From this schedule, we can see that processor Plx is 100% utilized but processor Pl2 is only 

40% untilized. If the processor library is expanded to include a second processor, P2 (with 

a computational delay of 2 t.u. and an area cost of 10 units), a better processor allocation 

can be generated. One solution will consist of one PI and one P2 processor which will have 

a total area cost of 30 units and a valid final schedule is shown below: 

time 12    3    4     5 

PI 
P2 

ABODE 
F    F    G   G 



This schedule shows that processor PI is still 100% utilized and that processor P2 is 80% 

utilized. This solution also uses 25% less area than the previous solution. 

Figure 1: A simple DFG consisting of identical operations and two feedback loops. 

More recently, a few systems allow for different types of processors for same type oper- 

ations; however they only utilize homogeneous architectures where all functional units are 

implemented using a single implementation style such as bit-parallel [16] -[20], or bit-serial 

[6], [29]. Although this allows for expanded libraries and a slightly wider design space, it 

still restricts the design to one type of implementation style or word length. 

We have developed two different solutions to high-level synthesis using heterogeneous 

functional unit libraries. One is based upon heuristic techniques which provide fast solutions 

but cannot guarantee their optimality and a second is based upon integer linear programming 

(ILP) models that can guarantee optimal solutions but suffer from exponential increases in 

run times as the design constraints are relaxed. In this section we provide more details of 

both techniques and provide results of our experiments using a small heterogeneous library. 

2.1    MARS Design Tool 

In our research we addressed the automatic allocation of hardware functional units from a 

heterogeneous library during the scheduling process to produce low cost area designs. In 

this tool, functional units include processors such as adders and multipliers and data format 

converters. The advantage of our approach is that we allow the design of heterogeneous 

architectures using different types of functional units (including implementation styles) to 

process same type operations. By utilizing a heterogeneous library, one removes the word size 



and implementation style restriction and allows the system to explore a much wider design 

space. However, if one allows the use of heterogeneous processors in the final architecture, 

the data format of one processor may not necessarily be the same as another processor. 

For example, the final design may contain an adder which computes one word in one clock 

cycle and a second adder which processes a half-word in one clock cycle. This leads to the 

need for data-format converters which accept input data in one format and generate output 

data in a different format (in our experiments, the data format may be bit-serial or digit- 

serial or bit-parallel). Therefore, the allocation, scheduling, and cost of these converters are 

also taken into account during the synthesis process. This high-level synthesis tool called 

the Minnesota ARchitecture Synthesis (MARS) System is based on our novel iterative loop 

scheduling and allocation technique that permits implicit retiming and pipelining. It also 

supports the unfolding transformation. In addition the synthesized architecture data-flow 

graph is generated by using the folding transformation. 

2.1.1 MARS overview 

The flowchart in Fig 2 displays the basic MARS framework. Our algorithm starts from the 

generation of the initial prototype schedule. The initial schedule helps the system generate 

a set of initial module solutions for the specified iteration period. The scheduling and 

resource refinement algorithm will then be invoked to determine the lowest cost processor 

and converter allocation that will produce a valid schedule for the given design parameters. 

2.1.2 Loop-Based Synthesis 

DSP algorithms are continuous and repetitive in nature; in other words, the operations 

are repeated in an iterative manner as new samples are processed. Because many DSP 

algorithms contain feedback (or recursive) loops , the operations of each loop for one iteration 

must be completed before the next iteration can be initiated and this imposes the greatest 

restrictions on the DFG. [30],[31]. Feedback limits the most obvious methods for improving 

the performance of the final architecture (e.g., pipelining). [31]. One cannot pipeline the 

feedback loops to any arbitrary level by inserting latches, because the pipelining latches 

would alter the number of delays in the loops and, hence, the original functionality of the 
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C""input DFG & ->. 
Processor Library^__^' 

Locate Loops and Paths 
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Generate initial solutions 
for critical loop 

Module Selection and Scheduling 

(^Done!   J} 

Figure 2: A flowchart showing the major steps of MARS-II. 

DFG. The non-recursive (or feed-forward) sections are less restrictive because one can always 

pipeline these sections at the feed-forward cutsets to achieve the desired sample rate; but 

at the expense of greater latency. Because of this constraint, MARS first schedules the 

recursive operations followed by the non-recursive operations during the scheduling process. 

This methodology is known as the loop-based approach to high-level synthesis. 

The first step of loop-based synthesis is to identify all of the loops. MARS utilizes the 

loop search algorithm described in [32] which has a complexity that is linear in the number 

of nodes plus edges. At this point, MARS also calculates the loop bound of every loop 

which will be used later in the synthesis process. The loop bound, To,, defines the minimum 

time required to complete one iteration of a loop, and is calculated as follows for loop j: 

Tibj = Tij/Dij, where T^. and D^ represent the computation time and the number of delays 

in loop j [31]. At first, MARS assumes that the operations are mapped to the fastest 

processors available in the library. This set of loop bounds define a lower bound on the 

iteration period, T, for the DFG. This bound, known as the iteration bound or T^, is the 

minimal time required for all recursive loops to complete one iteration and is determined by 



Table 1: Library of Processor Types (wordlength=16) 
type processor C L m I/O 

■A-bp Bit-parallel adder 1 1 53 bp 

■A-hp Half-word parallel adder 1 2 19 hp 

Ads 4-bit digit-serial adder 1 4 6 ds 

Mbp Bit-parallel multiplier 5 1 331 bp 
Mhp Half-word parallel multiplier 6 2 173 hp 

Mda 4-bit digit-serial multiplier 9 5 86 ds 

Table 2: Converter r. types 
type conversion C L m 

Vbp,hp bp-^hp 0 1 3 
vbp,ds bp^ds 0 3 4 
vhp,bp hp^bp 1 1 3 
vhp,ds hp-^ds 0 2 3 
vds,bp ds^bp 3 3 4 
vds,hp ds^hp 2 2 3 

locating the maximum loop bound [30],[31]. 

Because large number of loops may exist in the DFG, MARS reduces the set of all loops to 

a smaller subset which will be used for scheduling [14], [15]. If nonrecursive operations exist 

in the DFG, MARS locates all of the feed-forward paths which only contain nonrecursive 

operations. MARS also reduces this set of all paths [14], [15]. MARS now builds an initial 

schedule which will be used for generating initial solutions. Currently, MARS uses an 'As 

Soon As Possible' (ASAP) technique with the assumption that an infinite number of resources 

are available. 

2.1.3    Module Selection 

Module selection is the task of selecting a set of functional units from a processor library 

which is capable of satisfying all of the precedence constraints for the specified iteration 

period while minimizing a cost function. Table 1 shows the heterogeneous library used 

by MARS for our experiments. This library was also used in [25],[26] (see section 2.1.5 

for comparison of results). This library includes both functional units and data-format 

converters. Each module description consists of the computational delay or latency, C, 

the pipeline period, L, the area cost, m, and its data format. The computational latency 

represents the time required for one operation to complete, from input to output (note 

that one computation does not necessarily compute a complete word). The pipeline period 

represents the minimum time required between successive word computations in the same 

functional unit. 

The implementation of module selection within MARS is a two phase approach. In phase 

one, we generate a small number of initial solutions based on the characteristics of the loops 
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and in phase two, we refine and generate a few more initial solutions based on the number 

of total operations in the DFG. 

Every loop that has a loop bound equal to the iteration bound is considered a critical 

loop. Because critical loops are the most restrictive paths in the DFG, their operations must 

be scheduled onto the fastest processors of any solution. Therefore MARS utilizes the initial 

schedule to generate a few partial solutions to satisfy the critical loops. These solutions 

assume that all same type operations will be assigned to one processor (e.g., all additions 

to a bit-parallel adder). Any valid initial solution consisting of Ai type adders and M, type 

multipliers must satisfy the following criteria for every critical loop, cl: 

T   >   NMcl * {{CVi. + CVJ + CMj) + NAcl * (CAi) (1) 

where T represents the iteration period, NAcl and NMC, represent the number of addition 

and multiplication operations in cl, CAi and CM, represent the computation time of the 

adder and multiplier, and CVij and C„ . represent the pipeline latency of the data format 

conversion from i to j and from j to i, respectively. 

Fig. 3 shows a solution generated by MARS for a simple IIR filter commonly known as 

a biquad filter. If we view the nodes as operations and ignore the data format converters, 

we can see that this filter contains two loops, of which one is critical. Using the fastest 

processors in the library shown in Table 1, the loop bounds are: TlbL = 6 t.u. and Tn,L = 

3.5 t.u. For an iteration period of 7 t.u., only two initial solutions satisfy equation 1: Si = 

[Abp, Mbp] and S2 = [Ahp, Mhp\. 

To measure the effectiveness of these initial solutions, we define a resource constraint 

inequality which when satisfied will ensure that there are enough time steps to which all 

operations may be scheduled if and only if no precedence constraints exist in the DFG: 

g PROCVi > Nu (2) 

where U and Nu represent an operation type and the total number of operations in the DFG, 

FU represents the number of functional unit types that can compute U, LU{ is the pipeline 

period of the type i functional unit, and PROCui is a variable which represents the number 

of functional units of type i which can compute U. 

9 



Because the initial solutions were generated to satisfy the critical loops, they may not 

satisfy (2), especially for applications that contain nonrecursive operations. Note that (2) de- 

fines one linear inequality for each U type operation where the number of variables (PROCui) 

are equal to the number of processors capable of computing a U type operation. If a solution 

to this inequality is also forced to satisfy: 

FU 

min{ J2PROCVi * mPu.), (3) 
i=i 

we can use (2) and (3) to refine the initial solutions or generate new ones (minQ is a mini- 

mizing function). 

In the biquad filter example, one of the initial solutions did not satisfy (2). Therefore 

MARS has to refine the set of initial solutions. The refined initial solutions are: Si = [A^,, 

Mbp] (cost = 384), S2 = [Ahp, Ads, Mhp, Mds] (cost = 284). 

2.1.4    Scheduling 

For scheduling and resource allocation, we use an iterative approach that includes an in- 

cremental allocation and elimination refinement step to achieve the low cost solution. After 

MARS generates a set of initial solutions, it chooses the low cost solution to become the 

solution-under-test (SUT). The final step is to use the SUT (with allocated data format 

converters) and verify if a valid schedule can be constructed. The MARS scheduler will start 

from the initial schedule and then steps through the schedule at each time step; bind oper- 

ations to processors. During the scheduling, some time steps may contain resource conflicts 

(when more operations are scheduled at a time step than available processors). To resolve a 

conflict at a time step, MARS uses a simple priority function which identifies an operation 

to be bound to a processor at that time step (additional data format converters, if needed, 

are also allocated at this time). After all available processors at a time step are exhausted, 

the remaining unbound operations are reassigned to the next time step. This technique 

is repeated until a valid schedule is obtained or MARS encounters a time step where the 

resource conflicts cannot be resolved. 

Currently the priority values are based upon two criteria: the flexibility available to an 

operation, and the type of successor operation. We define flexibility, F, to be the number of 

10 



time steps in which an operation can be assigned. The flexibility for operations in the loops 

can be easily calculated before performing the scheduling step: 

Fh=T*Dk-Tlbi 

where Fh is the flexibility associated with loop /,- (note that Tlbi is determined by using 

the fastest processors in the SUT). Each loop will have its own flexibility and operations 

which belong to multiple loops will have a flexibility equal to the smaller loop flexibility. 

Non-recursive operations have infinite flexibility because we do not place restrictions on the 

latest execution time. Operations that have greater flexibility will have lower priority and 

operations in the critical loops will have the highest priority. As the scheduling process 

progresses, the flexibilities change as operations are bound to the processors of the SUT or 

reassigned to new time steps. The flexibilities are also affected by the allocation of required 

data-format converters. 

The second criterion to determine the priority value is only considered if two or more 

operations have the same flexibility. This criterion checks the operation type of the successor 

of each operation that is being considered for processor binding or time step reassignment. 

MARS gives higher priority to operations that have successor operations which provide for 

greater overlap of different operation types between the loops. 

For cases where MARS cannot resolve all resource conflicts, the SUT becomes invalid. 

Instead of eliminating the SUT, MARS uses an iterative approach that allows for incremental 

processor refinement for invalid solutions. Let us assume that the current invalid SUT 

contains 1 Abp and 2 Ahp. MARS will check the utilization of each functional unit in the SUT 

and then make an incremental refinement on the SUT. If all processors have an operation 

bound to it, MARS allocates another lowest cost functional unit of the SUT (e.g., another 

Ahp). However, if one of the Ahp is never utilized, MARS would not allocate another Ahp. 

Instead, MARS would remove one Ahp and allocate one Abp unit. This simple refinement step 

allows MARS to avoid unnecessary allocation of functional units that will never be used. The 

cost of this newly refined solution is then compared with the other initial solutions generated 

earlier and the lowest cost solution becomes the new SUT. This iterative loop continues until 

a valid schedule can be generated for a SUT which becomes the low cost solution. 
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For the biquad filter example, S2 is the initial low cost solution and it becomes the SUT. 

MARS is able to produce a valid schedule for S2 as shown with the DFG of the final solution 

(including data-format converters) in Fig. 3. 

2.1.5    Experimental Results 

The fifth-order wave digital elliptic filter has been used extensively for high-level synthesis 

[1]; therefore, we ran a series of experiments using various libraries found in previous work 

related to module selection. Table 3 contains the results of module selection for a small 

library presented in [19]. This library only contains non-pipelined processors consisting of 

two adders (Afast with a computation time of 1 t.u., and Asiow with a computation time of 2 

t.u.) and one multiplier (M with a computation time of 2 t.u.). In Table 3 the first column 

shows the results of [19] and the second column contains the results produced by MSSR [20] 

(note that the experiments with MSSR were performed with only Ajast and M processors). 

time 12    3   4    5    6    7 

Ahp'- 2    2    114   4 
Ads: 3   3   3   3 
Mhp: 5    5    6    6    7   7 
Mds: 8    8    8    8 

Figure 3: The valid schedule and DFG of the biquad filter showing the final assignment of 
operations to processor types and the data-format converters. 

We also show the optimal solutions generated by the ILP models of [25] along with the 

results of MARS. This table shows that MARS is able to generate optimal solutions while 

[19] and MSSR could not for all cases. 
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Table 3:   Comparison with [10], MSSR, ILP models, and MARS using the homogeneous 
library from [10].(CA/aj( = 1,CAslow = 2,CM = 2) 

[19] MSSR [20] ILP MARS 

16 NA NA 3Afast, 2M ZAfast, 2M 
17 SAfast, M 3A/0Si, 3M 2AfasU 2M 2Afast, 2M 
18 2Afast, 2M 2Afast, 2M 2Afast, 2M 2Afast, 2M 
20 NA NA lAfast, lAslow, IM lAfast, lAslow, IM 
21 lAfast, lAsiw, IM 2Afast, IM lAfast, lAslow, IM lAfast, lAslow, IM 
26 NA NA 3Asl0W, IM ZAsiow, IM 
28 lAfast, IM NA lAfast, IM lAfast, IM 
54 lAsiow, IM NA !Aslow, IM lAsiow, IM 

We also ran experiments on a larger library of non-pipelined processors used by MSSR 

[20] and these results are shown in Table 4. We compare our results with those of MSSR 

and of the ILP models of [25] in Table 5. Here we also show the cost of the solution and the 

run times in CPU seconds as run on a DECstation 3100 with 16MB of memory (Note: the 

CPU times for MSSR is an average time over all examples). The ILP models were solved on 

a SUN Sparestation 20 and the models became too large to solve for T > 65. From Table 5 

we can see that MARS generates better solutions than MSSR and in less time. Although 

ILP models can provide optimal solutions, this table also shows that they can become too 

large to solve. 

Table 4: Homogeneous library used by MSSR [11] (non-pipelined processors, C = L). 

Add C L m Mult C L m 

Al 1 1 16 Mi 1 1 256 

A2 4 4 5 M2 16 16 32 

As 16 16 2 M3 256 256 2 

We also experimented with several other common DSP benchmarks using the heteroge- 

neous processor and converter library shown in Table 1. In Table 6 we directly compare 

the performance of MARS with the ILP models developed for the same problem (note, the 

experiments for both were performed on a SUN Sparestation 2 unless marked by an '*' which 

were run on a SUN Sparestation 20). This table has been broken down into three sections, 
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Table 5: Comparison of MSSR, ILP models, and MARS using the homogeneous library used 
by MSSR. 

MSSR [20] ILP* MARS 
T Allocation Cost CPU Allocation Cost Allocation Cost CPU 

13 NA - - 3Ai lMi 304 3Ai lMi 304 0.35 

14 4Ai, 2Mi 576 9.5* 3Ai lMi 304 3Ai lAfi 304 0.35 

15 3Ai, lMi 304 9.5* 2Ai lAfi 288 2Ai lAfi 288 0.32 

16 2AU 1A2, lMi 293 9.5* 2Ai lMi 288 2Ai lMi 288 0.32 

18 2Ai, lMi 288 9.5* 2Ai lMi 288 2AX lAfi 288 0.32 

22 NA - - lAi 1A2, IA3, lMj 279 IAX 2A2, lMi 282 0.40 

23 NA - - lAi 1A2, lMi 277 IAX 1A2, lMi 277 0.32 

27 lAi, lAfi 272 9.5* lAi lAfi 272 lAi lMi 272 0.33 

58 NA - - 3Ai 4M2 176 ZAi 4M2 176 4.20 

60 3Ai, 4M2 176 9.5* 2Ai 4M2 160 2Ai 4M2 160 3.60 

64 NA - - lAi 4M2 144 lAi 4M2 144 3.60 

70 lAi, 4M2 144 9.5* Too Large - l^i 4M2 144 3.60 

74 NA     • - - Too Large - IAX 2M2 80 0.86 

93 lAi, 2M2 80 9.5* Too Large - IAX 2M2 80 0.86 

140 NA - - Too Large - 1A2 1M2 37 0.50 

156 1A2, 1M2 37 9.5* Too Large - 1A2 1M2 37 0.50 

240 NA - - Too Large - 2AZ 1M2 36 0.72 

288 2A3, 1M2 36 9.5* Too Large - 2A3 1M2 36 0.72 

432 NA - - Too Large - IA3 1M2 34 1.10 
448 1A3, 1M2 34 9.5* Too Large - IA3 1M2 34 1.10 
944 NA - - Too Large - 2A3 4M3 12 9.30 

1040 2A3, 4M3 12 9.5* Too Large - IA3 4M3 10 11.40 

the desired iteration period, the results and performance of MARS, and the results and 

performance of the ILP models of [25]. 

In results columns, Table 6 shows the final solution (processor and converter allocation), 

the final cost, and the CPU time in seconds. Table 6 shows that MARS can generate similar 

solutions in one to two orders of magnitude less time than the ILP approach (See section 2.2). 
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Table 6:  Time assignment benchmark results and comparisons between MARS and ILP 
models for the heterogeneous library of Table 1. 

T MARS cost CPU ILP model cost CPU 

5th Order Wave Elliptic Filter 
25 ZAbp,\Mbp 490 0.36 3Abp,lMbp 490 3.16 
26 2Abp,lMbp 437 0.32 2Abp,lMhp 437 26.2 
27 lAijp^lAhp^lM^^Zvijp^p^lv^p^p 431 0.23 lAhp^AhpilMttpjlvhp^pilvhpfip 428 658 
28 lAbp,lAhp,\Mbp,lvbp,hp-,1-Vhp,bv 409 0.88 \Aiyp,lAhp,lMbp,lvbpthp^hp,bp 409 417 
31 3Ahp,lMhp 230 0.37 3Ahp,lMhp 230  * 

34 2Ahp„\Ads^Mhp 223 0.39 2Ahp,lMhp 211  * 

4th Order Lattice Filter 
14 3Abp,2Mbp 821 0.20 ZAbp,2Mbp 821 1.58 
15 2Abp,lMbp 437 0.20 2Abp,lMbp 437 3.15 
16 lAbp,2Ahp,lMbp, lvbPthp-Xvhp,bp 428 0.30 lAbp,lAhp,1.Mbp,lvbPthp,lvhp,bp 409 18.0 
17 lAbp,lAhp,lMbp,lvbp,hp,1-Vhp,bp 409 0.48 lAbp,lMbp 384 21.2 
18 4Ahp,lMhp 249 0.20 2Ahp,lAds,lMhp,lvhptds,lvds,hp 223 11.9 

4th Order Jaumann Filter 
16 2Abp,lMbp 437 0.15 2Abp,lMbp 437 14.9 
17 lAbp,lMbp 384 0.17 lAbp,lMbp 384 14.3 
18 lAbp,lMbp 384 0.73 lAbp,lMbp 384 39.9 
19 3Ahp,lMhp 230 0.18 2Ahp,lMhp 211 24.7 
20 2Ahp,lMhp 211 0.15 2Ahp,lMhp 211 48.6 
23 4Ads,lMhp, lvhP,ds^Vds,hp 203 0.17 - - - 

24 3Ads,lMhp, lvhp,ds^Vds,hp 197 0.43 - - - 

4 stage Pipelined Lattice Filter 
3 2Abp,7Ads,5Mbp, 6vbPtds 1827 0.27 2Abp,7Ads,5Mbp, 6vbPtds 1827 23.6 
4 lAhp,9Ads,3Mbp,lMhp,2Mds,lvbp,hp 

^hp,dsi^-vhp,bpi '^bp,dsi^vds,hpi^ds,bp 

1458 0.30 2Ahp,7Ads,4Mbp, 

^vbp,hpi^vbp,dsi *-Vhp,bpi ±Vhp,ds 

1440 58.2 

5 llAds,3Mbp, 9vbptds, 3Vds,bp 1107 0.72 9Ads,3Mbp, 9vbp^s, 2vds,bp 1091 40.6 
6 9Ads,2Mbp,lMhp, 

LVhp,ds)^vds,bpiVvbp,dsi ^vds,hp 

927 0.65 8Ads,2Mbp, 

6vbpjds,lVhptds, lVds,bpAVds,hp 

917 77.2 

16 Point FIR Filter 
1 60Ads,BMbp, 24vbp,ds,24vds,bp 3200 0.30 60Ads,8Mbp, 2AvbPtds,2Avds,bp 3200 3.53 
2 30Ads,4Mbp, 12vbPids,^Vds,bp 1616 0.25 30AdsAMbp, 12%>,ds,12vds,&p 1600 5.65 
3 26Ads,3Mbp,8vbPtds,8vds,bp 1213 0.95 20 Ads ,3Mf,p ,8vbP)ds fivds,bp 1177 7.85 
4 l5Ads,2Mbp, 6vbPtds,8vds,bp 808 0.28 l5Ads,2Mbp, 6vbPidsfivds,bp 800 7.25 
5 15Ads,lMbp,lMhp,lMds, 

^■vhp,dsi^vbp,dsi^vds,hpi^vds,bp 

721 0.49 12Ads,lM6p,3Mds,3vdS)6p,3u6P)ds 685 20.4 

6 l3Ads ,lMbp,2Mds ,3u6P)ds ,6vds,bP 617 0.64 10Ads,lMbp,lMhp, 

^vbp,dsi^hp,dsy^vds,bpi^vds,hp 

578 121.87* 

7 l2Ads,lMbp,lMds$vbp,ds,7vds,bp 529 0.55 - - - 

8 8Ads,lMbp,3vbp!ds,8vds,bp 423 0.30 - - - 
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2.2    Integer Linear Programming High-Level Synthesis 

As stated earlier, integer linear programming (ILP) solutions have been recently used to 

solve the scheduling problem in high-level synthesis. By modeling the scheduling task as 

an ILP problem, the models provide the flexibility to include new design considerations 

and optimal solutions. Therefore the ILP formulation is ideal for modeling the scheduling 

task in a heterogeneous synthesis environment. In our research, we have developed a set 

of efficient ILP models for high-level DSP synthesis within a heterogeneous environment. 

This approach leads to faster solutions than other ILP approaches by bounding the search 

space of the variables. Furthermore, this approach can also perform automatic retiming and 

pipelining as well as unfolding to improve the processor utilization. These models have been 

designed to perform automatic allocation of hardware functional units from a heterogeneous 

library during the scheduling process while minimizing the overall area cost. The functional 

units in these models include processors, data format converters, and registers. 

2.2.1    Time-Constrained Scheduling by ILP 

The time-constrained scheduling determines when and in which processor each computation 

should be executed to minimize the cost, such as the number of processors, while satisfying 

the speed requirement. The time assignment step determines the execution time of each 

node in the data-flow graph (DFG). It is followed by the processor allocation step which 

determines in which processor each computation is executed. In this section, the integer 

linear programming model for time assignment supporting overlapped schedule (or functional 

pipelining) and structural pipelining is introduced. 

We use the following notation to describe a synchronous DFG. DFG = (N, E) where N 

is the set of nodes and E is the set of edges in the DFG. Each node i G N has a scheduling 

range defined by a lower and upper bound, LBi and UBi. These are the earliest and the 

latest time steps, respectively, in the scheduling range. LBi and UBi can be determined 

as the as soon as possible (ASAP) schedule and the as late as possible (ALAP) schedule, 

respectively. Ri denotes the scheduling range of node i, which is the closed time interval 

[LBi, UBi\. We define Ri + k to denote the interval [LBi + k, UBi + k] where k is an any 
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integer. 

Let Ca and La denote the computation latency and the pipeline period of node a, respec- 

tively. The computation latency represents the time from an input to its associated output. 

If the computation of node a starts at time step j, the result is output at time step j + Ca- 

The pipeline period represents the minimum time between successive computations. If the 

computation of node a is initiated at time step j on a processor, any other computation 

cannot be initiated on the same processor until j + La. 

The ILP model minimizes the the cost, M, which is the number of processors (4) (in the 

case when only one type of processor is used), subject to the constraints (5), (6), and (7). 

The following parameters are used in the ILP model. 

TT is the specified iteration-period. 

i G N is a node. 

j is a time step. 

Xij is a binary variable, and Xij = 1 means that the computation of the node i starts at the 

time step j. 

e — (a,b) e E is an edge directed from node a to node b with a delay count We. 

Ca is the computation latency of node a. 

La is the pipeline period of node a. 

Minimize COST=M (4) 

2>y = l   VieN (5) 

UBa j-WeTr 

E      xaja+   E   Xbjb<l   Ve = (a,b)eE,je(Ra + Ca-l)n{Rb + WeTr),    (6) 
ja=j-Ca+l jb=LBb 

E 
m M^JT'-I Li_l 
E E xi,J+kxTr-p + 

TT 

><M   J = 0,l,...,Tr-l      (7) 

The assignment constraint (5) ensures that each node % has only one start time in its 

scheduling range R{. 

For every directed edge (a, b), the computation of node b must start after the computation 

of node a is completed. This is ensured by the precedence constraint (6). 
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Given the iteration period Tr, the time class J = 0,1,..., Tr - 1 must hold. Each time 

step j belongs to the time class J = j — [jr\Tr. In other words, the time class J consists of 

time steps J, J + Tr, J + 2Trr .. In the overlapped schedule, the computations executed at 

time steps belonging to the same time class are executed concurrently in different processors. 

The inequality (7) is used to count the required number of processors. The first term of the 

left-hand side of (7) is the number of nodes whose computation is initiated or being executed 

at the time class J. When the pipeline period of a node is longer than the iteration period, 

the processor must be counted multiple times, h^- , since the node occupies the processor 

for more than one iteration period. This accounts for the second term in constraint (7). The 

inequalities (7) for all the time classes make the integer variable M no less than the largest 

required number of processors. 

2.2.2    Counting the Number of Registers During Scheduling 

In [33], a technique was proposed to count the number of registers during resource-constrained 

scheduling. Since the technique was developed for non-overlapped scheduling, it cannot be 

directly applied to the time-constrained overlapped scheduling. In this section, we generalize 

the technique for the overlapped scheduling. Furthermore, it is extended so that registers of 

general digit-serial data can be counted. 

2.2.2.1    The Models of Processors and Registers 

The computation latency is the difference in time steps from an input of a data to an 

output of a result associated with that input data. Let Ca denote the computation latency 

of a processor executing the computation of node a. If the computation of node a starts at 

time step j, its result becomes available as input data to computations of other nodes at 

time step j + Ca. Here, 'available' means the data is stored in a register and can be read by 

processors after and on the time step j + Ca. From this view point, there are two models 

of processors: one where a processor has its own dedicated register to store the output data 

as illustrated in Fig.4(a); and the other where a processor does not have such a register at 

the output as illustrated in Fig.4(b). In the latter case, the computed result is latched by a 

register outside the processor at the end of the time step j + Ca — 1 and the data becomes 
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Figure 4: Processor models. In this case, processors are pipelined in two levels, (a) A 
processor has its own output register, (b) A processor does not have its own output register. 

available from the time step j+Ca- Registers which are not dedicated to particular processors 

can be shared or commonly used by all processors (note that processors may have their own 

internal registers for pipelining but these registers cannot be commonly used by processors). 

Although the latter model would impose longer logic level critical path on the last pipeline 

stage of a processor, it could lead to synthesized systems which use less number of registers 

and therefore less chip area. In this paper, we use the model of Fig.4(b). Processors are 

assumed to have no dedicated registers at the output. 

2.2.2.2    The Technique to Count the Number of Registers 

In this section, the technique to count the number of registers proposed in [33] is briefly 

introduced. 

The life-time of data is defined as the duration from the time step the data is produced to 

the time step the data is last used. If the life-time of data contains a time step j, the data is 

said to be live at j. The data live at time step j must be stored in a register at j. Therefore, 

the required number of registers at a particular time step is equal to the number of data live 

at that time step. Let ba denote the node which last uses the data output from node a. Note 

that the output data of node a becomes live at the time step j if the computation of node 

a begins at the time step j — Ca. Whether the data produced by the execution of node a is 

live at time step j is checked by 

j-Ca UBa j-1 UBb 

/ J     
xa,ja ~ 2^/        Xa,ja ~     Z-J    

Xh,jb + Z_^ xbb,jb 
ja=LBa ja=j-Ca+l jb=LBb jb=j 

2   if data is live at j 
(8) 0   if data is not live at j 

By summing the left-hand side of (8) for all the nodes in N, we get twice the number of live 
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data at time step j. Thus, we obtain 

(j-Ca UBa j-l UBb \ 

E     Xaja ~ E XW ~     E     Xh,jb + E Xh,jb      < ^MR (9) 
ja=LBa ja=j-Ca+l jb=LBb jb=j ) 

where MR is the number of registers. By applying the inequality (9) to every time step j, 

the required number of registers, MR, can be obtained. 

In general, the node a may have more than one immediate successor nodes. If i is an 

immediate successor node of node a, then the edge (o, i) must exist in E. The life-time of 

the data output by node a ends at the time step when the last immediate successor node is 

executed. Generally, we cannot know prior to scheduling which immediate successor node 

is executed last. Therefore, we must use the inequalities (9) for all edges if which successor 

node is last executed is not known [34]. This is represented as 

{j-Ca UBa i-i UBb        } 

E     Xa,ja ~ E        XW ~     E    Xbjb + E Xb,jb \ < 2MR 
ja=LBa ja=j-Ca+l jb=LBb jb=j J 

v^e£„J = o,il...,Tr-i. (10) 

where Es is the set of edge sets where each element set, E0, is the set of edges such that 

no two edges have the same starting node. Thus, each EQ corresponds to a combination of 

nodes and the immediate successor nodes. Theoretically, there exist FLew sa combinations 

of such edges and therefore UaeN sa elements in Es, where sa is the number of immediate 

successor nodes of node a. However, whether an immediate successor node would last use 

the data may be known prior to scheduling by means of transitivity analysis. We can reduce 

Es by eliminating some element sets E0 which contain the edge (a, b) where node b is known 

not to be the last node to use the data of node a. 

2.2.2.3    The Number of Registers in Overlapped Schedule 

While non-overlapped scheduling of an iterative processing algorithm derives the schedule 

where all the computations in the current iteration are executed within an iteration period, 

the computations in the current iteration are distributed over several iteration periods in 

overlapped schedules [35, 36, 37]. Therefore, execution of current iteration overlaps with the 

previous and subsequent iterations. In this case, the life-time of a data may be longer than 

the iteration period and may overlap with itself for some time classes as shown in Fig.5. We 
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Figure 5:  Register usage in an overlapped schedule,   (a) The life-time is longer than the 
iteration period Tr. Then, two registers are used at the time class J as shown in (b). 
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Figure 6: Dividing time steps into groups and assignment of coefficients, (a) For nonover- 
lapped scheduling, (b) For overlapped scheduling. 

must use as many registers as the number of overlaps for storing any data. Therefore, to 

count the number of registers precisely, the life-time of data must be checked to examine not 

only whether it contains a particular time class but also how many times it contains that 

time class. 

In the technique to count the number of live data in [38, 33], time steps are divided at 

time step j into two domains. For node a, the variables xaja are accumulated into (9) with 

a coefficient +1 for ja < j — Ca and —1 for ja > j — Ca- For the immediate successor node 

ba, the variables Xbajb are accumulated into (9) with a coefficient —1 for ji, < j and +1 for 

jb > j- This is illustrated in Fig.6(a). 

Time steps can also be divided into more than two domains if necessary. We divide time 

steps at time class J, that is the time steps J + kTr for integers k, as illustrated in Fig.6(b). 

Then, we associate the coefficient 1 — 2k to the variables xaja where J+(k — l)Tr — Ca < ja < 

J+kTr—Ca and the coefficient — l+2k to the variables xbajb where J+(k—l)Tr < jb < J+kTr 

and accumulate the variables to derive the following inequality 

k~b      I J+kTr-Ca J+kTr-l \ 

E     £ E {-2k + l)xa,ja+        £       (2k-l)xbJb)<2MR,     (11) 
(a,6)eEo k=kab  \Ja=J+(k-l)TT-Ca+l jb=J+(k-l)Tr J 
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where the upper and lower bound of k, kab and kab, respectively, are chosen so that every time 

step in the scheduling ranges Ra and Rb for the edge (a, b) is included. They are calculated 

as 

kgb 

kab 

H mm 

max • 

LBa + Ca + J- 

UBa + Ca + Tr-l- J 

LBb + l-Tr + l-J 

UBb + l-J 
}■ (12) 

(13) 

For example, if the node a and its immediate successor node b are scheduled at the time 

step between J — Ca and J + Tr — Ca and the time step between J + 3Tr and J + 4Tr, 

respectively, the life-time of the data output by node a contains the time class J three times, 

i.e., the time steps J + Tr, J + 2Tr, and J + 3Tr. In this case, the left-hand side of (11) 

becomes 6, that is —1 for node a and +7 for node b. Therefore, the left-hand side of (11) 

gives exactly twice the times the life-time contains the time class J. 

Moreover in the overlapped scheduling, the number of delays on the edges are considered 

in the precedence constraints. The number of registers depends on the number of delays. If 

the number of delays on the edge e = (a, b) is We, then the data output by the computation 

of node a is used by the node b after We iterations. In other words, the life-time of the data 

contains a particular time class another We number of times. Therefore, the inequality (11) 

is modified by taking the delays into account as follows: 
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kab     I J+kTr-Ca J+kTT-l \ 

E     E E (-2k + l)xa,ja+       £       (W + We)-l)xbdh)<2MR 
(a,b)eE0 k=kab  \ja=J+(k-l)Tr-Ca + l jb=J+(k-l)Tr ) 

VE0eEa,J = 0,l,...,Tr-l. (14) 

The ILP model for the time assignment to minimize the total cost of processors and 

registers is as follows. It minimizes the cost (15), subject to the constraints (5), (6), (7), and 

(14). 

Minimize COST = mM + mrMR (15) 

where m and mr are the relative costs of a processor and a register. 

2.2.2.4    Registers for Digit-Serial Data Architecture 

Digit-serial architecture is used where the inexpensive bit-serial architecture is too slow 

and the expensive bit-parallel architecture is faster than necessary [39, 40]. The number of 

bits processed per cycle is referred to as the digit-size. The bit-serial architecture and the 

bit-parallel architecture can be regarded as special cases of the digit-serial architectures for 

digit-size equal to 1 and the word-length, respectively. In this section, the technique to count 

the number of registers is extended for digit-serial architectures. 

If the word-length is w bits and the digit-size is d bits, then one word of data consists of 

w/d digits. We consider the case where w is a multiple of d. Let n denote the number of 

digits in a word, i.e., n = w/d. If the first digit of a data is input to node a at time step 

jo, then the second digit is input at j0 + l, and the last digit is input at j0 + n - 1. The 

computation latency Ca of node a is the time difference from the input of z-th digit to the 

output of z'-th digit for i = 0,1,..., n -1. Hence, in the case mentioned above, the first digit 

of the output is available at time step j0 + Ca, the second digit is available at j0 + Ca + l, 

and the last digit is available at j0 + Ca + n - 1. 

A digit-serial register is the set of d 1-bit registers. One digit-serial register stores one 

digit at a time. While storage of a bit-parallel data always requires one bit-parallel register, 

the required number of digit-serial registers for storing digit-serial data varies from time 

step to time step even in the non-overlapped schedule. Fig.7 shows the schedules of node 

a and its immediate successor node b. We assume that n = 4, Ca = 2. The arrow in the 

figure represents the life-time of a digit. For example, the life-time of the first digit of the 
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Figure 7: The number of live digits (n = 4, Ca = 2). 

i—* 
b\   i   i   r 

(c) 

data output by node a contains only the time step j in Fig.7(a) while the life-time of the 

first digit of the data output by node a contains the time steps j - 3, j - 2,j - 1, and j in 

Fig.7(b). In the schedule shown in Fig.7(a), only the life-time of the first digit contains the 

time step j. Therefore, we need only one digit-serial register in this case. In the schedules 

shown in Fig.7(b) and (c), the time step j are contained by all the digits and the 3rd and 

4th digits, respectively. Therefore, we need 4 and 2 digit-serial registers in the schedules 

shown in Fig.7(b) and (c), respectively. The inequality to count the number of live digits is 

as follows: 

• • • + 7xaJ-Ca-4 + 7x0j_Co_3 + 5xaj-ca-2 
+ 3Xa,j-Ca-l + Xa,j-Ca ~ Xaj-Ca + 1 ~ ^a,j-Ca+2 

-7xbtj_5 - 7xtj_4 - 5rr6j_3 - 3xbJ-2 ~ a?6j-i + xbJ + xbJ+1 • • •   <   2MR.        (16) 

More generally, in the case of overlapped scheduling, the inequality to count the number 

of live digits at the time class J = 0,1,..., Tr - 1 is 

Kb 

E   E 
(a,b)eE0 k=kab 

■'OL—V 

n-I„Tr-l 

J2    i-lnk + 2p + 1 + 2(p + l)ln)xa,j+kTr-ca 
p=0 
Tr-1 

+        £    (-2nk + 2(n-inTr)-l+2(p + l)in)xatJ+kTr_Ca. 
p=n-lnTr 

n-lnTr 

+      Y,  (Mk + We)-2p + l-2pln)xb,J+kTr_p 
P=i 

Tr-(n-l„Tr)-l 

+ J2 (2n(k + We) + 1 + 2pln)xb,j+kTr+p 
p=0 

► < 2MÄ (17) 
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Figure 8: Examples of time assignment and life-time of digits (n = 5). 

where 
We   = the number of delays on the edge e = (a, b) 

n 
T 

r   i n — 1 

fca(,   = max 

kab   = min 

-E/ffa + Ca + Tr-l-J 

Lßa + Ca — J 

UBb + n-J- 

LBb + n - Tr + I - J 

Example: Fig.8 shows results of the time assignment of the nodes a and b for Tr = 3. 

We assume that n = 5, Ca = 2, and We = 0. In the case of the time assignment shown in 

Fig.8(a), node a and node b are assigned time steps —2 and 0, respectively. Two digit-serial 

registers must be used at the time class 0 since the life-time of the first and the third digits 

contain the time class 0. The first term of the left-hand side of (17) becomes 3 when k — 0 

and p = 0 and the fourth term of the left-hand side of (17) becomes 1 when k = 0 and 

p = 0. Therefore, in this case, the left-hand side of (17) is 4 which is equal to twice the 

number of required registers. In Fig.8(b), node a and node b are assigned time steps 0 and 

6, respectively. In this case, 7 digit-serial registers must be used at the time class 0 since 

the time class 0 is contained twice at time step 3, 4 times at time step 6, and once at time 

step 9. The first term of the left-hand side of (17) becomes —3 when k = 1 and p = 1 and 

the third term of the left-hand side of (17) becomes 17 when k = 2 and p = 1. Therefore, in 

this case, the left-hand side of (17) is 14 which is also equal to twice the number of required 

registers. 

To simplify notation, assume 

Pi(k,p,n)   =   -Ink + 2p + 1 + 2(p + l)ln, (18) 
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P2(k,p,n)   =   -2nk + 2(n-lnTr)-l + 2(p+l)ln, 

Pi(k,P,n)   =   2n{k + We)-2p + l-2pln, 

Pf{k,p,n)   =   2n{k + We) + l + 2pln. 

(19) 

(20) 

(21) 

It is important to note that the following inequality 

*o6 

E   E 
(a,b)eE0 k-kab 

} < 2MR, (22) 

n-lnTr-l 

J2    (Pi(k, P, n) - S)xajJ+kTr-ca-p 
p=0 
Tr-l 

+ E      (P2(k,P,n) - S)XatJ+kTT-Ca-p 
p=n—lnTr 
n-l„Tr 

+     E  (P£(k,P,n) + S)xb!j+kTT-p 
p=l 

Tr-(n-lnTr)-l 

+ E (P4 (k> P> n) + S)Xb,J+kTT+p 
p=0 

where S is an arbitrary integer, can be used instead of the inequality (17) since -S for 

variables xaj and +S for variables xbj cancel each other. This model is used in section 2.2.3. 

2.2.3    Register Minimization in Architectures with Multiple Data Formats 

Generally, slower processors are less expensive than faster processors. Therefore, using the 

slower but less expensive processors for the computations which do not require fast execution 

may result in a system with lower cost. A processor of one design style inputs data of 

the format different from the output data of a processor of another design style. If the 

output data of a bit-parallel processor is input to a bit-serial processor, we must use a data 

format converter which converts data format from bit-parallel to bit-serial. Such data format 

converter may be designed as described in [41]. In this section, we show the ILP model to 

minimize the total cost of processors and converters. Then, the ILP model is extended to 

minimize the total cost of processors, converters, and registers. 

2.2.3.1    ILP Model for Processor Type Selection 

We have developed an ILP model for the time assignment supporting the processor type 

selection. In this ILP model, each node is assigned to a processor type chosen from the library 

of processor types so that the total cost of processors is minimized without violating any 
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precedence constraints. Data format converters are automatically included in the synthesized 

architecture when necessary. 

Let LBl
v and UB%

V denote respectively the lower bound and the upper bound of the time 

at which a converter of type v could start converting the data output from node i. These 

are also determined by ASAP and ALAP scheduling results. Let Rl
v denote the scheduling 

range [LBl
v, UBl

v]. We define R\, + k to denote the closed time interval [LBZ
V + k, UBl

v + k] 

for any integers k. 

The computation latency and the pipeline period are now specified for each processor 

type t. If a node is assigned to a processor of type t, its computation latency is Ct and its 

pipeline period is Lt. 

The ILP model minimizes the cost (23), subject to the constraints (24)-(30). The fol- 

lowing parameters are used in addition to those defined in section 2.2.1. 

PROC is the library of available processors. 

Fi denotes the subset of processors Fi C PROC, capable of executing node i £ N. 

Ct is the computation latency of a processor of type t. 

Lt is the pipeline period of a processor of type t. 

mt is the cost a processor of type t. 

Gt is the set of nodes which can be executed on a processor of type t. 

Xijtt is a binary variable. rry)t = 1 means that node i starts at time step j on a processor of 

type t. 

FORM is the set of input and output formats for all the processors. 

I(t) and 0(t) are respectively the input and output data formats of processor t. 

CONV is the library of available converters. 

vqr denotes a data format converter which converts data from format q to format r. 

Cv is the conversion latency of a converter of type t. 

Lv is the pipeline period of a converter of type t. 

mv is the cost a converter of type t. 

Vv is the set of nodes which could be assigned to a processor whose output format is the 

same as the input data format of a converter of type v. 

yij}V is a binary variable. y^^v — 1 means that a data format converter of type v is used and 
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the conversion for the output data of node i starts at time step j. 

Mt and Mv are integer variables respectively indicating the number of processors of style t 

and the number of converters of type v. 

- - (23) Minimize COST =     ^     mt-^t +      E     mvMv 

tePROC veCONV 

E E *w = i      v< G N- 
teFi j€Ri 

(24) 

E   ya,;,>gr>    E     E ar«J«.*a+   E    T, x<>db,tb-l   Vq,reFORM,e = (a,b)eE. (25) 
j'eÄ? to£Fa jaefl* t&eF6 jfiefy, 

0{ta)=q I(tb)=r 

E        E 
toGFa Ja=j-Ct0-C„0(to)|r+l 

j-WeTr 

a,ja,ta +     ^        ^     xb,jb,tb S 1 
tteFf,  jb=LBb 

I{tb)=r 

(26) 

Vr e FOAM, e = (a, ft) 6^6 (Ra + Cta + C„0(te)iPl - 1) n (Ä6 + WeTr). 

£/Ba 

E E xa,ja,ta +2^ 2^       J/oji.^n  ^ 1 (27) 
taeFa ja=j-Cta+l vqri J!=LB$ 

ri=r •qri 

Vr e FOiüM, aeN,j e (Ra + minCto - 1) n (Ui?£  ) 

"BVl j-WeTr 

E    E    i/oji^r, + E   E xbjb,tb < i (28) 
"«»•l j'i=J-C«„ri+l 
ri=r 

t6eF6  jb=LBb 
I{tb)=r 

Vr € FOAM, e = (a, 6) £ E,j e (U(K   + C„   - 1)) n (Ä„ + WeTr) 

E E E ^t,J+fclTr-p,t + 

l*K^J      p=0 

Lt-l 

Tr 
/    y     ^IJl,* > <Mt (29) 

VJ = 0,l,...,Tr-l,tePROC 

E 
iev„ 

E E Vi,J+kiTr-p,v + 
p=0 

Lv-1 
E Vhjuv 

heRi 

> <M„ (30) 

VJ = 0,l,...,Tr-l, D€ CONV. 

The node assignment constraint (24) ensures that node % has one start time and is assigned 

to one processor.   The converter assignment constraint (25) ensures that a data format 

converter of type vqr is used if node a is assigned to a processor whose output data format is 
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q and whose immediate successor node b is assigned to a processor whose input data format 

is r. 

In the precedence constraint from processor to processor (26), the data format conversion 

time is taken into account. If an edge e = (a, b) exists, the computation of node b must start 

at least Cta +CVo(ta) I(tb)—WeTr time step later than the computation of node a starts since the 

computation of node a takes Cta time steps and the data format conversion takes CVo.ta) /(tt) 

time steps. If 0(ta) = I(tb), no data format conversion is performed since CVrT = 0 for 

r e FORM. 

Inequalities (27) and (28) ensure the precedence constraints from processor to converter 

and from converter to processor, respectively. In the case when the output format of the 

converter and the input format of the processor are different, there is no need to constrain 

the precedence relation between them. In that case, at least one of the terms on the left-hand 

side of the inequality (28) is 0 and the inequality is automatically satisfied. 

Inequalities (29) and (30) are used to count the number of processors and the number of 

converters of each type. 

2.2.3.2    Counting the Number of Registers During the Time Assignment 

To calculate the cost of registers, we must know the exact number of registers, MRT , of each 

data format r. Although it is possible to use part of a bit-parallel register as a bit-serial 

register and vice versa, it would require complex control circuits. Therefore, we assume 

that no 1-bit register is commonly used as part of registers of different data formats. That 

is, bit-parallel registers are always used as bit-parallel registers and bit-serial registers are 

always used as bit-serial registers. Henceforth, we will count the number of registers of each 

data format separately and just sum them up with cost factors to calculate the total cost of 

registers. 

Registers of the data format r are used for the edge (a, b) in the cases where (i) node a 

and node b are assigned to processors of data format r (as illustrated in Fig.9(a)), (ii) node 

a is assigned to a processor of data format r, node b is assigned to a processor of data format 

/ other than r, and the data format converter of type vrf is used to convert the data output 

from node a (Fig.9(b)), or (iii) node a is assigned to a processor of data format q other than 
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Figure 9: Assignment of nodes to processor types. 

r, node b is assigned to a processor of data format r, and the data format converter of type 

vqr is used to convert the data output from node a (Fig.9(c)). There also exists a case where 

no register of data format r is used for the edge (a, b). In that case, both the nodes a and 

b are assigned to processors of data format other than r. Which case really occurs depends 

on the processor type selection and cannot be known prior to solving the ILP model. 

In the case where node b is the only immediate successor node of node a, at most one 

converter of type vqr (for any q) is used if the node b is assigned to a processor of data format 

r. The required number of format r registers for the output data of node a in the case where 

node a has only one immediate successor node, MR(a,r, J), is calculated as 

nr-l„rTr-l 

X)       (Pi(k,p,nr) -S*b)(   ^2    Xa,J+kTr-C,a-p,ta + Yly^+l'Tr-Cv<lt.1-p,vqr1) 
P=0 ta6Fa «in 

0(ta)=r ri=r 

rP-i 
+        X]        (P2(k,P,nr) -S*b)(    X     Xa,J+kTr-Cta-p,ta + ^2 ya,J+kTr-C„qri-P,V<lri) 

p=nr-lnrTr ta€Fa »Vi 
0(ta)=r ri=r 

nr-l„rTr 

+     5Z      (P£(k>P>nr) + Sab)(   ^2    xbJ+kTr-P,tb + ^2 ya,J+(k+Wc)Tr-p,vri/) 
P=l tb€Fb "i-i/ 

/(<t)=r ri=r 

Tr-(nr-lnrTr)-l 

+ ]C (^4 (fc>P>nr)+ ££(,)(   Yl    xb,J+kTr+p,tb + Y2 y^J+(k+We)Tr+p,vrif) 
P=0 tb€Fb 

vrif 

(31) 

2MR(a,r,J)=  ^  < 

where nr is the number of digits of data format r. The integer S£6 is chosen so that every 

coefficient, P£(k,p,nr) + S£6 or Pf(k,p,nr) + Sr
ab, in the third and the fourth terms of the 

right-hand side is positive. In that case, the coefficients Pi(k,p, nr)—S^b and P2(k,p, nr)—S£6 

in the first and the second terms of the right-hand side may be positive, negative, or zero. 

Hence, binary variables ya,j,vqr 
maY unnecessarily become 1 to falsely reduce the value of 

the right-hand side of (31) and give an incorrect number of registers. To prevent this, the 
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constraints 

E E yaj,vqri + E   E *..**. < i Vß e iv, (32) 

E    E   VaJ,vnf <   E    E *MA    V(a> b)^E (33) 
<Vi jefl? «6GF6 jbeRb 

are introduced so that variables ya,j,vqr do not unnecessarily become 1. Note that the con- 

straints (32) and (33) do not eliminate any assignment possibility. If node a is assigned 

to a processor of format r (the second term on the right-hand side of (32) is 1), then we 

need not use a data format converter which converts the output data of node a into format 

r. Moreover, if node b is assigned to a processor which does not input data of format r 

(the right-hand side of (33) is 0), then we also need not use a data format converter which 

converts data into format r. Therefore, these constraint may be satisfied in the case where 

the converters are inserted properly. 

On the other hand, in the case where node a has more than 1 immediate successor nodes, 

we use another binary variables ga,j,r- It is important to note that the transitivity analysis is 

of no use in the case of multiple data formats. It is because which immediate successor node 

last uses the format r version of data can not be known until nodes are assigned to processor 

types. Therefore, we introduce new variables ga^r rather than using very large number of 

constraints for counting the number of registers. Although the number of variables would be 

increased, the number of constraints is greatly decreased from HaeN sa * Tr to Tr for every 

data format r eFORM. 

The variable ga>jt1. = 1 means that the format r version of the output data of node a is 

last used at time step j. If such format r version of data is not used, all the variables are 0. 

To compute the value of ga,j,r, we use the following inequalities 

Ei"Jw>   E    E0' + We)-zw,t6,    VaeNme = (a,b)eE (34) 
je«? tb€Fb jeRb 

I(tb)=r 

E 3 ' 9a,j,r > E    E   3 • ya,j,vqri,    VaeJVm (35) 

Etfaj,r<l,    VaeNm (36) 
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where iVm is the set of node with more than one immediate successor nodes and i?" is the 

union of the scheduling ranges Ra and i?" r. 

Then the required number of format r registers for the output data of node a in the case 

where node a has more than one immediate successor nodes is calculated as 

nr-f„.rr-i 

2M'R{a,r,J)=  £  < 

53 (-Pl(fc'P'nr) ~ Sab)(    Yl     Xa,J+kTT~Cta-p,U + 'Y\iya,J+kTr.-Cvqr.l-p,vqri) 
P=0 ta€Fa «Vj 

0(t„)=r ri=r 

Tr-1 

+        ^2        (P2(fc,p,nr)-5^)(    Y2     xa,J+kTr-Cta-p,ta+Yly^+l'Tr-CVqri-p,vqri) 

p=nr-inrTr ta€Fa «in 
0(ta)=r ri=r 

nr-UrTr 

+      Yl      (P3(k>P>nr) + STab)9a,J+kTr-p,r 
p=l 

TP-(nP-/„rTr)-l 

+ ]C (-P4(fc.P>nr) + 5';6)fla,j+fcri.+p,r 
p=0 

(37) 

The integer Slb is chosen so that every coefficient, Pg(k,p,nr) + Slb or P%(k,p,nr) + 5„6, 

in the third and the fourth terms of the right-hand side is positive. Thus, the coefficients 

Pi(k,p,nr) — Slb and P2(k,p,nr) — S^ in the first and the second terms of the right-hand 

side may be negative. We must use the constraints (32) and (33) so that converters are not 

unnecessarily used. 

The ILP model to synthesize the architecture with lowest cost of processors, converters, 

and registers minimizes the cost (38), subject to the constraints (24)-(30), (32), (33), (34)- 

(36), and (39). Here, Mr is the number of format r registers and mr is the relative cost of a 

format r register. 

Minimize COST=    ^2   mtMt+    5Z    mvMv +    J2    ™TMT (38) 
tePROC veCONV reFORM 

53    2MH(o, r,J)+ 53 2M'R(a, r, J) < 2Mr   Vr G FORM, J = 0,1,..., Tr - 1.   (39) 
aeN-Nm aeNm 

2.2.4    Experimental Result 

In this experiment, the effectiveness of the ILP model to minimize the cost of registers as 

well as the cost of processors and converters is confirmed. We use a DFG of a biquad filer 

illustrated in Fig. 10. 
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Figure 10: A data flow graph of a biquad filter. 

Table 7 shows a library of processor types. Each node in the DFG can be assigned to 

one or more of the processors in the library. In Table 7, the computational latency, C, the 

pipeline period, L, the input and output data format, / and O, and the cost, m, are shown 

for each processor type. Processors Al and A2 represent two different adder implementations 

while processors M3 and M4 represent two different multiplier implementations. Processors 

Al and M3 input and output data of format bp and Processors A2 and M4 input and output 

data of format hp. These formats bp and hp imply the bit-parallel and the half-word parallel, 

respectively. The half-word parallel data format is the digit-serial where the digit-size is half 

the wordlength. Therefore, half the bits of one word are processed at the same time and the 

number of digits of one word of half-word parallel is two. For the DFG of the biquad filter 

shown in Fig. 10, Nodes 1, 2, 3, and 4 can be assigned to either processor Al or processor 

A2 in Table 7. Similarly, nodes 5, 6, 7, and 8 can be assigned to either processor M3 or M4 

in Table 7. 

Furthermore to support data format conversion, we include a library of data format 

converters which convert between all possible data formats listed in the library of processors. 

For example the library of processors in Table 7 requires two data format converters as shown 

in Table 8. Each of the data format converters is classified according to its conversion type, 

its conversion latency, C, its pipeline period, L, and its cost, m. The conversion latency of 

the converter of type bp —» hp is 0 since the first digit of the converted data is available at 

the time when the bit-parallel data is input to the converter. 

We choose the costs of a register as rribp — 2 and rrihp — 1. 
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Table 7: Processor specifications Table 8:   Data format converter specifica- 
tions 

type C L I 0 m 
Al 1 1 bp bp 10 
A2 1 2 hp hp 5 
M3 2 2 bp bp 50 
M4 3 3 hp hp 25 

type conversion C L m 

Vhp,bp bp —>• hp 0 1 1 

Vbp,hp hp —> bp 1 1 1 

nhp 

bp 
»f *t 

bp 

&-&m 
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Figure 11: Time assignment result by the complete ILP model, (a) The assignment of nodes 
to processor types, (b) Time chart of the time assignment and life-time of data. 

Fig. 11 shows a time assignment result for the iteration period Tr = 3 obtained by solving 

the complete ILP model with register minimization. Fig.ll(a) shows the assignment between 

nodes and processors and inserted converters. A white node means it is assigned to either 

an Al adder or an M3 multiplier. A dotted node means it is assigned to either an A2 adder 

or an M4 multiplier. Boxes are then inserted to represent data format converters. The time 

chart of the node computations and data format conversions and the life-time of data are 

illustrated in Fig. 11(b). In this figure, a box represents either a computation of node or a 

data format conversion. An arrow represents the life-time of a data in the case of format bp 

or a digit in the case of format hp. For example, the computation of node 5 starts at time 

step 3 and its result is output at time step 5 since the computation latency of M3 multiplier 

is 2. That result is stored in a register of format bp at the time step 5 and used by the 

computation of node 2 at time step 5. A data format conversion of the type bp —>• hp for 

the output data of node 2 (represented by a half shaded box with '2' inside) is executed at 

time step 6. The first digit of the converted data is output immediately at time step 6 and 

used by node 6.  The second half of the data is stored in the converter and output as the 
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Figure 12: Time assignment result with ILP model division, (a) The assignment of nodes to 
processor types, (b) Time chart of the time assignment and life-time of data. 

second digit at at time step 7. Then it is input by node 6. In this case, 1 Al adder, 1 A2 

adder, 2 M3 multiplied, 1 M4 multipliers, 1 bp ->■ hp converter, and 1 hp ->■ bp converter, 3 

bp registers, and 2 hp registers are used in this architecture of the lowest cost of 150. 

Fig. 12 shows a time assignment result for the iteration period Tr = 3 obtained by solving 

the divided ILP models. In this case, the cost of processors and converters is the same as 

the result by the complete model. However, we need 4 bp registers and 1 hp register and the 

total cost is 151. This cost is one unit of cost higher than the optimal result obtained by the 

complete ILP model. This is because the assignment of nodes to processor types is fixed as 

obtained by the second ILP model and there is no chance to alter the assignment while the 

cost of regisers is precisely calculated and minimized by the third ILP model. 

Table 9 compares the complete ILP model and the divided ILP models. Table 9 shows 

the number of constraints (eqn) and the number of variables (var) in the ILP model, the cost 

of synthesized architecture, and the CPU time to solve the ILP model. The CPU times are 

measured by the ILP solver GAMS/OSL [42] running on a SparcStation 20. While the CPU 

time to solve the complete ILP model is 134 seconds, the total CPU time for the divided 

ILP models is only 5.5 seconds. Thus, the divided ILP models save much CPU time at the 

expense of 0.7% increase in the cost of synthesized architecture. 

For more practical results, we have synthesized architectures for some benchmark data- 

flow graphs. In this case, we assume the library of processors and the library of converters 

as shown in Tables 10 and 11.  We also assume that arithmetic is in fixed point and the 
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Table 9: The ILP Models for the Biquad Filter Synthesis 
Model eqn var Cost CPU [sec] 

complete 374 231 150 134.06 
first 65 72 142 2.80 
second 81 84 150 2.23 
third 81 69 151 0.47 

Table 10: Library of Processor Types (wordlength = 16) 
type processor C L m / 0 

■A-bp Bit-parallel adder 1 1 53 bp bp 
■A-hp Half-word parallel adder 1 2 19 hp hp 
Ads 4-bit digit-serial adder 1 4 6 ds ds 
Mbp Bit-parallel multiplier 5 1 331 bp bp 
Mhp Half-word parallel multiplier 6 2 173 hp hp 
Mds 4-bit digit-serial multiplier 9 5 86 ds ds 

wordlength is 16 bits. The format ds implies the 4-bit digit-serial where the digit size is 4 

bits. Table 12 shows the specification of the register of each data format. In this table n is 

the number of digits of one word and m is the cost of one register of each data format. 

Table 13 shows; the data-flow graph; the specified iteration period Tr; the model; the 

number of constraints and the number of varibles of the ILP model; CPU time in seconds to 

solve the ILP model; the lowest cost architecture; the number of registers; and the total cost. 

The ILP models are solve by the ILP solver GAMS/OSL running on a SparcStation 2. For 

example, in the case of the 4th order lattice filter with TT = 14, the second ILP model is not 

used. This is because only one type of processor is used for each operation type (addition 

or multiplication) and therefore the assignment of node computations to processor types is 

Table 11: Converter Types 
type conversion C L m 

Vbp,hp bp^hp 0 1 3 
vbp,ds bp-tds 0 3 4 
vhp,bp hp^bp 1 1 3 
Vhp,ds hp^ds 0 2 3 
Vds,bp ds-^bp 3 3 4 
Vds,hp ds-^-hp 2 2 3 

Table 12: Registers 
fmt n m 
bp 
hp 
ds 

1 
2 
4 

8 
4 
2 
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Table U !: Time Assignment Benchmarks 
DFG TT Mdl eqn var CPU Lowest cost architecture reg Cost 

4th Order 14 1st 49 47 0.82 3Abp, 2Mhp 821 
Lattice 3rd 41 28 0.86 2Abp, Mbp 5i?6p 861 
Filter 15 1st 138 84 2.14 2Abp, Mbp 437 

3rd 119 114 2.26 2Abp, Mbp 5Rbp 477 
16 1st 212 129 14.1 Abp, Ahp, Mbp, Vbp^hpi vhp,bp 409 

2nd 207 130 17.7 Abp, Afrp, Mbp, Vbpthp> ^hp,bp 5Rbp 449 
3rd 235 146 5.74 Abp, Ahp, Mbp, 4Vbp,hpi vhp,bp Oxlbp, othhp 448 

17 1st 310 181 17.6 AbP, Mbp 437 
3rd 163 114 17.0 Abp, Mbp 6Rbp 432 

18 1st 276 154 5.96 Ahp, Ads, Mfrp, Vhp,ds, vds,hp 223 
2nd 206 122 4.37 A-hpi Ads, Mhp, Vhp,ds, Vds,hp 9Rhp 259 
3rd 225 130 1.24 Ahpi A^s, Mfip, Vhp,ds, Vds,hp 7Rhp, 4Rds 259 

5th Order 25 1st 243 167 2.02 SAbp, Mbp 490 
Elliptic 3rd 141 113 1.39 3Abp, Mbp 9Rbp 562 
Wave Filter 26 1st 415 249 24.4 2Abp, Mbp 437 

3rd 185 142 2.47 2Abp, Mbp 9RbP 509 
27 1st 586 326 651 Abp, Ahp, Mbp, Vbp^hpi vhp,bp 428 

2nd 452 288 806 Abp, Ahp, Mbp, Vbp,hpi vhp,bp 9Rbp 500 
3rd 494 367 13.0 Abp, Ahp, Mbp, iVbp^hpt Vhp,bp 6Rbp, 5RhP 499 

4th Order 16 1st 346 291 9.53 2Abp, Mbp 437 
Jaumann 3rd 232 154 4.32 2Abp, Mbp 6i?6p 485 
Filter 17 1st 417 327 13.5 Abp, Mbp 384 

3rd 254 172 7.45 Abp, Mbp 6Rbp 432 
18 1st 451 362 24.3 Abp, Mbp 384 

3rd 276 190 12.9 Abp, Mbp 6Rbp 432 
17 1st 305 262 7.12 2Ahp, Mhp 211 

3rd 291 191 5.92 2Ahp, Mhp ISRhp 263 
18 1st 348 291 .17.0 2Ahp, Mhp 211 

3rd 314 209 200 2Ahv, Mhp ISRhp 263 
4-stage 3 1st 146 145 5.55 2Abp, 7Ads, 5Mbp, VbP,ds 1807 
Pipelined 2nd 254 133 1710 2Abp, 8Ads, 5Mftp, VbPtds 13Rbp 1917 
Lattice 3rd 229 135 5.74 2Abp, 8Ads, 5Mbp, 7vbp,ds 11 Rbp, 8Rds 1941 
Filter 4 1st 215 210 4.42 Ahp, 9Ads, ^Mbp, Vbp,hp, Vbp,ds, Vhp,bp, Vds,bp 1411 

2nd 373 178 4359 Ahp, 9Ads, ^Mbp, Vbp>hp, Vbp,ds, VhP,bp, Vds,bP l2Rbp 1513 
3rd 437 230 55.7 Ahp, 9Ads, 4M(,P, 2vbp,hp, 6vbp,ds, VhP,bp, Vds,bp 8Rbp, 2Rhp, 8Rds 1528 

5 1st 238 261 14.8 9Ads, 3M(,P, VbPids, Vds,bp 1055 
3rd 534 276 312 9Abp, 2>Mbp, 9vbPtds, Vds.bp QRbp, 24Rds 1187 

16 Point 1 1st 96 64 1.09 6QAds, 8Mbp, Vbp,ds, Vds,bP 3016 
Fir Filter 3rd 134 84 0.72 60Ads, 8Mbp, 24vbPtds, 24vds,bP 8Rbp, 56Rds 3376 

2 1st 100 117 1.12 30Ads, 4Mfcp, Vbp,ds, Vds,bp 1508 
3rd 188 120 2.71 30^, 4Mbp, I2vbp,ds, 12vds,bP 4Rbp, 30i?ds 1692 

3 1st 104 170 1.82 20,4,^, 3M(,P, Vbp,da, Vds,bp 1121 
3rd 248 160 38.0 20Ads, 3Mtp, 8vbp,d$, 8vds,bp 3Rbp, 22Rds 1245 
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obvious. Thus, we immediately generate the third ILP model based on the result of the first 

ILP model. The same applies to other cases where the second ILP model is missing. 

3    Other High-Level Tools 

We have also developed other tools and methodologies during our pursuit of solutions to 

the high-level synthesis problem and in developing efficient architectures. In this section we 

present these new results. 

3.1    Determination of Minimum Iteration Period 

DSP algorithms are repetitive in nature and can be easily described by iterative data-flow 

graphs (DFGs) where nodes represent tasks and edges represent communication [43, 44]. 

Execution of all nodes of the DFG once completes an iteration. Successive iterations of 

any node are executed with a time displacement referred to as the iteration period. For all 

recursive signal processing algorithms, there exists an inherent fundamental lower bound 

on the iteration period referred to as the iteration period bound or simply the iteration 

bound [45, 46, 47]. This bound is fundamental to an algorithm and is independent of the 

implementation architecture. In other words, it is impossible to achieve an iteration period 

less than the bound even when infinite processors are available to execute the recursive 

algorithm. 

Determination of the iteration bound of the data-flow graph is an important problem. 

First it discourages the designer to attempt to design an architecture with an iteration period 

less than the iteration bound. Second, the iteration bound needs to be determined in rate- 

optimal scheduling of iterative data-flow graphs. A schedule is said to be rate-optimal if 

the iteration period is same as the iteration bound, i.e., the schedule achieves the highest 

possible rate of operation of the algorithm. 

Two algorithms have been recently proposed to determine the iteration bound. A method 

based on the negative cycle detection was reported in [48] to determine the iteration bound 

with polynomial time complexity with respect to the number of nodes in the processing 

algorithm.   Another method based on the first-order longest path matrix was proposed 
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Input:       DFG G=(N,E,q,d). 
Output:    The iteration bound Tj. 
1. Construct the graph Gd = (D, Ed, to) from the given DFG G = (N, E, q, d). 
2. Run the minimum cycle mean algorithm on Gd- 

Minimum cycle mean algorithm 
2.0 Choose one node s G D arbitrarily. 
2.1 Calculate the minimum weight Fk(v) of an edge progression 

of length k from s to v as 
Fk(v)=    min   {Ffc_i(u) + ü)(u,v)}      for k = 1,2,..., \D\ 

(u,v)€Ed 

with the initial conditions FQ(S) = 0; Fo(v) = oo, v ^ s. 
2.2 Calculate the minimum cycle mean A of Gd- 

Fm{v)-Fh{v) 
A = mm    max . _. ;  

v£DQ<k<\D\-l \D\ — k 
3. Now, Ti = -A is the iteration bound of the DFG G. 

Figure 13: The algorithm to determine the iteration bound. 

in [49] to determine the lower bound with polynomial time complexity with respect to the 

number of delays in the processing algorithm. In this section, we propose yet another method 

based on the minimum cycle mean algorithm to determine the iteration bound with lower 

polynomial time complexity than in [48] and [49]. 

3.1.1    A New Algorithm to Determine the Iteration Bound 

In this section, we describe an algorithm that determines the iteration bound by using the 

minimum cycle mean algorithm. The cycle mean of a cycle c, ra(c), is defined as 

m(c) = EeecU;(e) (40) 
Pc 

where w(e) is the weight of the edge e and pc is the number of edges in cycle c. In other 

words, the cycle mean of a cycle c is average weight of the edges included in c. 

The minimum cycle mean problem involves the determination of the minimum cycle 

mean, A, of all the cycles in the given digraph where 

A = min ra(c). (41) 

An efficient algorithm was proposed in [50] to determine the minimum cycle mean for a given 

graph with time complexity ö(|iV||JE'|), where N and E are the set of nodes and the set of 

edges of the graph, respectively. 
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(2)W     (2)W    Dß w(1) 

(a) (b) 

Figure 14: The cycle mean and the cycle bound. 

The number of nodes in a cycle is equal to the number of edges of the cycle. According 

to the definition of the graph Gd = (D, Ed, w), each node in Gd corresponds to a delay in the 

DFG, G, and the edge weight w(di, d2) of the edge (di, d2) G Ed is the largest weight among 

all the paths from the delay d\ to the delay d2. Therefore, the cycle mean of the cycle Q, 

containing k nodes, di, d2, ■ ■., dk, is the maximum cycle bound of the cycles of G, which 

contain the delays labeled d\, d2, -■-, dk- For example, in the graph shown in Fig.l4(a), 

there are two delays labeled a and ß, respectively. There exist two cycles {(/, k), (k, i), (i, I)} 

and {(/, k), (k,j), (j, i), (i, I)}, both of which go through delays a and ß. Their cycle bounds 

are 4/2 = 2 and 6/2 = 3, respectively, and the maximum of them is 3. Fig. 14(b) shows 

the graph Gd = (D,Ed,w) corresponding to the graph shown in Fig.l4(a). In Fig.l4(b), 

D = {a,ß}, w(a,ß) = 1, and w(ß,a) = 5. There exists one cycle {(a,ß), (ß,a)} and its 

cycle mean is 3. It equals the maximum cycle bound of the cycles in the graph shown in 

Fig. 14(a), which contain the delays a and ß. 

Since the cycle mean of a cycle c in the graph Gd equals the maximum cycle bound of the 

cycles in G which contain the delays in cycle c, the maximum cycle mean of the graph Gd 

equals the maximum cycle bound of all the cycles in the graph G. Therefore, the iteration 

bound of the graph G can be obtained as the maximum cycle mean of the graph Gd- 

Let Cd denote the set of cycles in graph Gd- Then, the maximum cycle mean of the graph 

Gd is 

max mlc)   =   max—E  
cecd cecd       pc 

-Eeec(-w(e)) 
=   max ^ L-^ 

cecd pc 
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(2) 

G=(N,E,q,d) 

N={h,i,j,k,l,m} 

(a) 

Gd=(D,Ed,w) 
D=(a#,y,8) 

(b) 

Gd=(D,Ed,w) 

D=(a$,y,5) 

(c) 

Figure 15: The DFG G and the corresponding edge-weighted digraph Gd- In parenthesis in 
G are the computation times of nodes. 

miKEeec(-^(e)) 
cecd pc 

(42) 

It is the negative of the minimum cycle mean of the graph Gd — (D, Ed, w), where w(e) = 

—w(e) for every edge e G Ed- Consequently, the maximum cycle mean of the graph Gd, i.e., 

the iteration bound of the graph G, can be obtained as the negative of the minimum cycle 

mean of the graph Gd- 

The algorithm to determine the iteration bound of the given graph by means of the 

minimum cycle mean is summarized in Fig. 13. 

From the DFG G = (N,E,q,d), constructing Gd = (D,Ed,w) and Gd = (D,Ed,w) 

requires the computation time of 0(|.D||i?|) complexity. The time complexity to calculate 

the minimum cycle mean for the graph Gd = (D, Ed, w) is C?(|.D||.Etf|). Hence, the total time 

complexity to determine the iteration bound isC?(|JD||J5d| + |D||jE|). This time complexity is 

better than the ö(|D|3log|D| + |-D||.E|) complexity of the other methods since \Ed\ < \D\2 

and therefore \Ed\ < |£>|2log|D| always hold. The memory requirement for calculating the 

edge weight w and determining the minimum cycle mean for the graph Gd are C?(|iV|) and 

0(|.D|2), respectively. The total memory requirement is 0(\N\ + \D\2). 

Example. From the given DFG G illustrated in Fig.l5(a), the edge-weighted digraph Gd 

and Gd are constructed as shown in Fig.15(b) and (c), respectively.   If we choose a as s 
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Table 14: Comparison of Iteration Bound Determination Algorithms 
Method Time complexity Memory requirement CPU [mS] 

EWF            PLF 
NCD 0(\N\\E\\og\N\) 0(\N\ + \E\) 25.2°            1.00c 

LPM 0(\D\\E\ + \D\') Ö(\N\ + \D\2) 1.926            2.97d 

LPM' ö(|D||£| + |D|3log|D|) 0(\N\ + \D\2) 3.58°            6.38c 

MCM 0(\D\\E\ + \D\\Ed\) 0(\N\ + \D\2) 0.7176          0.650d 

"the obtained iteration bound = 16.0002594   cthe obtained iteration bound = 1.50439453 
6the obtained iteration bound = 16.0000000    dthe obtained iteration bound = 1.50000000 

used in the minimum cycle mean algorithm, Fk(v), the minimum weight of paths consisting 

of exactly k edges in Ed, and max0<fc<|D|_i   |p|p,~fc       are calculated as follows:   Then, 

Fk(v) 0 1 2 3 4 max 
0<Jfc<3 

F4(v)-Fk(v) 
4-k 

a 0 -3 -7 -10 -14 -3.5 

ß OO -7 -11 -14 -18 -3.5 

7 OO OO -7 -11 -14 -3 
5 CO -6 -9 -13 -16 -3 

(43) 

A = min.yeD max0<fc<|o|_i |D|,ß,~fc = —3.5 and the iteration bound of the DFG G is 3.5. 

The reader may confirm that the critical cycle is {(h, j), (j, I), (I, m), (m, k), (k, h)} and its 

cycle bound, that is the iteration bound of the DFG, is 3.5 since the sum of computation 

times of nodes h,j,l,m,k is 7, the critical cycle contains 2 delays labeled as a and S, and 

7/2 = 3.5. 

3.1.2    Experimental Results 

The CPU time to determine the iteration bound for practical DFGs are compared. We chose 

the 5th order elliptic wave filter (EWF) [51] and the recursive part of the 4-level pipelined 

lattice filter (PLF) [52] as benchmarks. EWF which consists of 34 nodes, 56 edges, and 7 

delays and the number of delays, |D|, is relatively smaller than the number of nodes, \N\, 

and the number of edges, \E\. On the other hand, PLF which consists of 8 nodes, 10 edges, 

and 8 delays and \D\ is comparable to |iV| and \E\. 

Table 14 shows the comparison of time complexity, memory requirement, and CPU time 

to determine each iteration bound of EWF and PLF. In this table, NCD is the negative cycle 
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detection method by using Bellman-Ford shortest path algorithm to detect negative cycles, 

LPM is the longest path matrix method, LPM' is the mixture of LPM and NCD methods 

by using Floyd shortest path algorithm to detect negative cycles, and MCM is the minimum 

cycle mean based method. The computation time of node i, q(i), is assumed 1 if node i is 

an addition or 2 if it is a multiplication. All the CPU times are measured on a SparcStation 

2 and do not include the time consumed in reading the DFG from a file. 

In NCD and LPM' methods, the calculation of the iteration bound is terminated when the 

difference between successive guess iteration bounds becomes smaller than l/|iV|272 where 

| AT | is the number of nodes in the DFG and 7 is the longest computation time of nodes [53]. 

While LPM and MCM derive the exact iteration bound, NCD and LPM' derive only an 

approximate iteration bound. Some post-calculations may be necessary to identify the exact 

iteration bound from the approximate. 

3.2    Exhaustive Scheduling and Retiming 

Time scheduling and retiming are important tools used to map behavioral descriptions of 

algorithms to physical realizations. These tools are used during the design of software for 

programmable digital signal processors (DSPs), during high-level synthesis of applications- 

specific integrated circuits (ASICs), and during the design of reconfigurable hardware such 

as field-programmable gate arrays (FPGAs). Time scheduling and retiming operate directly 

on a behavioral description of the algorithm, such as a data-flow graph (DFG). Since the 

decisions made at the algorithmic level tend to have greater impact on the design than those 

made at lower levels, the importance of time scheduling and retiming cannot be overstated. 

Our contributions in [54] and [55] present new formulations of the time scheduling and 

retiming problems, and based on these formulations, new techniques are developed to deter- 

mine the solutions to these problems. These formulations are valid for strongly connected 

(SC) graphs, where a strongly connected graph has a path u ~~> v and a path v ~» u for every 

pair of nodes u, v in the graph. We focus on strongly connected graphs because these graphs 

traditionally present the greatest challenges when they are mapped to physical realizations 

due to the feedback present in the graphs. 

Retiming consists of moving delays around in a DFG without changing its functionality. 
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As with scheduling, there is a huge body of literature on retiming, and new applications 

for retiming are constantly being found. For example, due to the recent demand for low- 

power digital circuits in portable devices, some recent work has focused on retiming for 

power minimization [56]. The groundbreaking paper on retiming [57] describes algorithms 

for tasks such as retiming to minimize the clock period and retiming to minimize the number 

of registers (states) in the retimed circuit. An approach to retiming which is based on circuit 

theory can be used to generate all retiming solutions for a DFG [58]. This approach was 

the motivation for our work on exhaustive scheduling. In [55], we show that retiming is a 

special case of scheduling, and consequently, the formulation of the scheduling problem and 

the techniques for exhaustively generating the scheduling solutions can also be applied to 

retiming. 

The impact of the formulations derived in this work are as follows. 

• The interaction between retiming and scheduling is important [59], and our formula- 

tions give a simple way to observe this interaction. 

• We show that retiming is a special case of scheduling. 

• We give solid mathematical descriptions of the scheduling and retiming problems in a 

common framework. 

• We develop techniques for generating all solutions to a particular scheduling or retiming 

problem. This allows a developer the ability to search the design space for the best 

solution, particularly when various parameters are difficult to model and include in a 

cost function. This has applications to software design, ASIC design, and design for 

reconfigurable hardware implementations. 

• Our formulations provide for a better understanding of scheduling and retiming which 

can be used to develop new heuristics for these problems. 

The exhaustive scheduling technique is demonstrated using the fifth-order wave digital 

elliptic filter shown in Fig. 16. We assume that addition and multiplication require 1 and 2 

units of time, respectively, and that hardware adders and multipliers are pipelined by 1 and 2 
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Figure 16: The fifth-order wave digital elliptic filter. The solid lines show a spanning tree 
used by the exhaustive scheduling algorithm. 

Table 15: The results of exhaustively scheduling the filter in Fig. 16. 

iter period    # sched solutions   CPU time (sec) 
16 
17 
18 

9900 
4669095 

580432280 

0.0342 
16.2 
2020 

stages, respectively. The results of exhaustively generating the scheduling solutions without 

considering resource constraints are shown in Table 15. The results of exhaustively generating 

the scheduling solutions which can be implemented on a given number of hardware adders 

and multipliers are shown on the left side of Table 16. From these tables, we can see that the 

time it takes to exhaustively generate only the scheduling solutions which satisfy a given set 

of resource constraints is orders of magnitude faster than the time it takes to exhaustively 

generate all scheduling solutions. The expressions in [60] can be used to compute the number 

of registers required by a given schedule. The results of this are shown on the right side of 

Table 16. Note that these results assume that internal pipelining registers cannot be shared 

between processors, while the results in [60] assume that internal pipelining registers can be 

shared between processors. 

3.3    Two-Dimensional Retiming 

Two-dimensional retiming [61, 62] is used to retime data-flow graphs (DFGs) which oper- 

ate on two-dimensional signals such as images. As digital image processing becomes more 
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Table 16: The results of exhaustively scheduling the filter in Fig. 16 for a given set of 
resource constraints. The left part of the table considers scheduling to the minimum possible 
number of adders and multipliers for the given iteration period, and the right part considers 
scheduling to the minimum number of adders, multipliers, and registers.  
iter 

period 
resources # sched solns 

CPU time 
(sec) 

16 3 add, 1 mult 77 0.00288 
17 2 add, 1 mult 98 0.0518 
18 2 add, 1 mult 131983 11.1 
19 2 add, 1 mult 33948842 1700 

resources # sched solns 

3 add, 1 mult, 7 reg 21 
2 add, 1 mult, 7 reg 73 
2 add, 1 mult, 7 reg 40723 
2 add, 1 mult, 7 reg 3056246 

popular in multimedia applications, the need for high speed, low area, and low power imple- 

mentations of multidimensional digital signal processing (DSP) algorithms increases. Like 

one-dimensional retiming [57], two-dimensional retiming can be used to increase the sample 

rate, reduce the area, and reduce the power consumed by a synchronous circuit. 

In [63], we present two techniques for retiming two-dimensional data-flow graphs (2DFGs). 

Each of these techniques minimizes the amount of memory required to implement the 2DFG 

under a clock period constraint. The first technique, called ILP 2-D retiming, is based on an 

integer linear programming (ILP) formulation which considers the 2-D retiming formulation 

as a whole. While this technique gives excellent results, it has slow convergence for large 

2DFGs. The second technique, called orthogonal 2-D retiming, is formulated by breaking 

ILP 2-D retiming into two linear programming problems, where each problem can be solved 

in polynomial time. The downfall of orthogonal 2-D retiming is that the results of the two 

linear programming problems can sometimes be incompatible. A variation of orthogonal 2-D 

retiming called integer orthogonal 2-D retiming is also based on a linear programming for- 

mulation, and this technique solves the incompatibility problem which may be encountered 

using orthogonal 2-D retiming. The techniques presented in this paper result in retimed 

2DFGs which require less memory than than the technique in [62] and are compatible with 

considerably more processing orders of the data than the technique described in [61]. 
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Architectures 

4    Discrete Wavelet Transforms 

The discrete wavelet transform (DWT) has generated a great deal of interest recently due 

to its many applications across several disciplines, including signal processing [64], [65], 

[66], [67], [68]. Wavelets provide a time-scale representation of signals as an alternative 

to traditional time-frequency representations. Our work on wavelets includes the design 

of efficient DWT architectures and the development of methodologies for designing these 

architectures. 

Several architectures for the 1-D DWT have been proposed in the past; [69] contains 

a survey of these architectures. For the most part, these architectures have been designed 

using ad hoc design methods because the focus has been on the architectures and not the 

methodologies used to design them. In our work, we are concerned with developing design 

methodologies which can be used to design wavelet architectures. Using these methodologies, 

a wavelet architecture can be designed to meet the specifications of a given application. 

Our work focuses mainly on the design of folded [70] architectures for the DWT, al- 

though we also consider digit-serial [71] architectures as well. Folded DWT architectures are 

appealing because they lead to single-chip implementations which can be pipelined for high- 

throughput or low-power applications. The basic idea behind the folded architectures is to 

time-multiplex filtering operations performed at various rates in the algorithm description to 

a small number of hardware filters [72], [73], [74]. The folded hardware is clocked at the same 

rate as the input data, resulting in a single-rate implementation of a multirate algorithm. 

Detailed folded DWT architectures based on direct-form FIR filter structures were derived 

in [73]. Our work presents a systematic technique for constructing folded architectures for 

the DWT. 

In the area of designing DWT architectures, our contributions are as follows: 

• The development of a novel multirate folding transformation [75], [76] which can be used 

to systematically fold the multirate DWT algorithm to single-rate DSP architectures. 

• The development of register minimization techniques which can be used to compute 

47 



the minimum number of registers required to implement single-rate [60] and multirate 

[76] DSP algorithms. 

• The design of efficient lattice-based architectures for the orthonormal DWT [77], [78], 

[79], [76]. 

• A systematic technique for generating architectures for tree-structured filter banks [75]. 

These contributions are described in detail in the following sections. 

4.1    Multirate Folding 

Multirate folding [75], [76] is a technique for systematically synthesizing control circuits 

for single-rate architectures which implement multirate algorithms. The term single-rate 

architecture is used to describe a synchronous architecture where the entire architecture 

operates with the same clock period. A direct mapping of a multirate DSP algorithm to 

hardware would require data to move at different rates on the chip. This would require 

routing and synchronization of multiple clock signals on the chip. To avoid these problems, 

we concentrate on mapping the multirate DSP programs to single-rate VLSI architectures. 

The advantages of multirate folding fall into two broad categories. The first advantage 

is that the multirate folding equations can be used to systematically determine the control 

circuitry for the architecture from a scheduled DFG. The second advantage, which is slightly 

more subtle, is that this formal approach can be used to address other related problems 

in high-level synthesis in a formal manner. Two such problems, memory minimization and 

retiming [57], are considered. Using the multirate folding equations, we derive expressions 

for the minimum number of registers required to implement the architectures, and we derive 

constraints for retiming the circuit such that a given schedule is valid. 

The properties of multirate folding, which are described in detail in [76], are summarized 

below: 

• Multirate folding is a novel technique for synthesizing control circuits for single-rate 

architectures which implement multirate DSP algorithms. 
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• The multirate folding equations allow us to address other problems in high-level syn- 

thesis, such as memory minimization and retiming. 

• Multirate folding operates directly on the multirate DFG, avoiding the step of first 

constructing an equivalent single-rate algorithm description. 

• Multirate folding accounts for pipelining, so architectures can be designed for high 

speed and low power [80] applications. 

• Multirate folding is applicable to a wide variety of DSP algorithms. We demonstrate 

its utility by designing a discrete wavelet transform architecture in [76]. 

4.2    Register Minimization 

In [60] and [76], expressions are derived for computing the minimum number of registers 

required to implement statically scheduled single-rate and multirate DSP programs. 

We describe the problem using an example. After the DFG has been scheduled, speci- 

fications for the communication paths between hardware modules can be determined using 

systematic folding techniques [70]. Consider the multiply-add operation in Fig. 17(a), which 

is an algorithm DFG describing y(n) = au(n) + v(n). Assume this multiply-add is part of a 

larger DFG which is to be implemented in hardware with an iteration period of 10, i.e., each 

node in the algorithm DFG will be executed by the hardware exactly once every 10 time 

units. If the multiply operation is executed by one-stage pipelined hardware module HM at 

time units 10/ + 2, and the add operation is executed by hardware module HA at 10Z + 8 for 

integer I iterations, then the connection between the multiplication and addition operations 

in Fig. 17(a) is mapped to the data path in Fig. 17(b). Upon examination of Fig. 17(b), one 

observes that at any given time, no more than one of the five delays labeled "5D" between 

HM and HA is storing a word of data that will actually be consumed by HA- To avoid the 

inefficient architecture that would result from direct implementation of Fig. 17(b) in sili- 

con, memory management is used in high-level synthesis tools to derive efficient data paths 

between processing modules. 

Memory management consists of choosing the type of registers, number of registers, 

and allocation of data to these registers.  The type of registers is usually dictated by the 
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Figure 17: (a) Algorithm DFG describing y(n) = au(n) + v(n). (b) Data path specification 
derived from the algorithm DFG for an iteration period of 10. 

architecture model used. In [60], we compute the minimum number of registers required 

for a statically scheduled DFG under various memory models. The allocation of the data 

to registers is an NP-complete problem for which heuristic algorithms have been suggested 

[81, 82, 83]. 

We use life-time analysis to derive closed-form expressions for the minimum number of 

registers required by a statically scheduled DSP program. These techniques offer several 

advantages over previously used techniques. First, the closed-form expressions can be used 

to represent cost functions for high-level synthesis optimization tools. An example of using 

these closed-form expressions in an integer linear programming (ILP) formulation is given 

in [60]. Second, the analytical tools we introduce can be used to derive expressions for the 

minimum number of registers under a variety of memory models which describe how data 

can be allocated to memory. This is important because the target architecture may impose 

constraints on how data can be routed to memory. We derive expressions for three memory 

models, namely the operation-constrained, processor-constrained, and unconstrained memory 

models. For the unconstrained memory model, where all memory-sharing constraints are 

relaxed, the minimum number of registers required to implement a DFG with m nodes 

can be computed in 0(m2) time. A third advantage of the analytical tools we introduce 

is that they can be used to determine memory requirements for more complex algorithm 

descriptions, such as DFGs which have multiplexers in the data paths. 
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Pipelining and retiming [57] are powerful tools used in high-level synthesis. Pipelining can 

be considered to be a special case of retiming. We consider an integer linear programming 

solution to the retiming problem, referred to as the minimum physical storage location 

(MPSL) retiming, which retimes a scheduled DFG such that its memory requirements are 

minimized under the unconstrained memory model while the schedule remains valid for the 

retimed DFG. We use MPSL retiming to retime a DFG which has been scheduled using the 

MARS design system [84], and we compare the memory requirements of MARS to a globally 

optimal solution. Our results show that the MARS system gives optimal or close-to-optimal 

results in terms of memory requirements. 

The results we present can be used throughout the high-level synthesis process. Expres- 

sions for the minimum number of registers can be used during scheduling to help determine 

the total cost of the architecture. After scheduling, MPSL retiming can be used to opti- 

mally retime a DFG in terms of registers required for its implementation. During memory 

management, our techniques can be used to optimize the hardware design in terms of the 

number of registers required. For instance, given the scheduled DFG and the desired memory 

model, the minimum number of registers required can be determined, and register allocation 

can be performed by an appropriate register allocation scheme which guarantees completion 

(e.g., forward-backward register allocation [81]). Expressions for the minimum number of 

registers can also be used to evaluate the effectiveness of register allocation schemes which 

are based on heuristics, since some schemes may require more memory than the theoretical 

lower bound in order to maintain simple control structures. 

4.3    Lattice-Based DWT Architectures 

This work is concerned with the design of VLSI architectures for the orthonormal DWT 

which projects a signal onto the compactly supported orthonormal wavelet bases introduced 

in [65]. The orthonormal DWT is computed using two-channel paraunitary filter banks [85], 

[86]. In particular, the compactly supported wavelets which we are concerned with in this 

work can be computed using two-channel FIR paraunitary filter banks. These filter banks 

result in perfect reconstruction (PR) analysis/synthesis systems which project signals onto 

a set of orthonormal basis functions. Any two-channel FIR paraunitary QMF bank can be 

51 



implemented using the QMF lattice [87], which has many desirable properties such as PR in 

the presence of coefficient quantization and low implementation complexity. These advan- 

tages of the QMF lattice motivated us to design efficient architectures for the orthonormal 

DWT based on this structure. 

We have described folded [70] and digit-serial [88], [71], [89] architectures which are based 

on the QMF lattice implementation in [79]. Folded DWT architectures are appealing be- 

cause they lead to single-chip implementations which can be pipelined for high-throughput 

or low-power applications. Digit-serial architectures also lead to single-chip implementa- 

tions, and these architectures have simple interconnection and 100% hardware utilization for 

any number of levels of wavelet decomposition. Folded and digit-serial architectures which 

have been presented in the past are based on direct-form filter structures which are not as 

efficient as the QMF lattice for computation of the orthonormal DWT. Two contributions 

are made in [79]. First, we show that, for the orthonormal DWT, use of the QMF lattice 

structure can lead to folded and digit-serial architectures with approximately half the num- 

ber of multipliers than corresponding direct-form structures, at the expense of an increase 

in the system latency. Furthermore, these architectures possess better finite word-length 

properties. Second, we present techniques for mapping the 1-D orthonormal DWT to folded 

and digit-serial architectures which are based on the QMF lattice structure. 

The basic idea behind the folded DWT architectures is to time-multiplex filtering opera- 

tions performed at various rates in the algorithm description to a small number of hardware 

filters [72], [73], [74]. The folded hardware is clocked at the same rate as the input data, 

resulting in a single-rate implementation of a multirate algorithm. Detailed folded DWT 

architectures based on direct-form FIR filter structures were derived in [73]. In [79] and 

[77], we present a systematic algorithm to construct folded architectures based on the QMF 

lattice for the orthonormal DWT. A detailed example is given to demonstrate the algorithm, 

and comparisons are made with the folded direct-form architectures in [73]. 

DWT architectures based on digit-serial processing techniques [88], [71], [89] were intro- 

duced in [73]. The number of bits processed per cycle, called the digit-size, varies through- 

out the digit-serial DWT architecture. The digit-size is chosen such that the architecture 

is single-rate and achieves 100% hardware utilization.  This is in contrast to folded DWT 
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architectures, which result in less than 100% hardware utilization. It may be noted that 

while it may be possible to design folded DWT architectures which achieve 100% hardware 

utilization, the control complexity in these architectures would be much higher. In [73], 

digit-serial architectures were presented for direct-form implementations of the DWT. In 

[79] and [77], we present a general method based on polyphase decomposition of filters [85] 

for implementing two-channel systems using digit-serial processing techniques. This method 

is used to derive digit-serial architectures based on the QMF lattice for the orthonormal 

DWT. 

4.4    Architectures for Tree-Structured Filter Banks 

In this paper, we develop a methodology for designing efficient VLSI architectures for M-ary 

tree-structured filter banks which are constructed from a single M-channel FIR filter bank. 

Full and pruned tree-structured filter banks are useful for many DSP applications, such 

as signal coding and analysis. Recent interest in the discrete wavelet transform (DWT) has 

significantly increased the number of applications for tree-structured filter banks because the 

DWT can be computed using a pruned tree-structured filter bank [64], [65]. Computation of 

wavelet packet bases is another application of pruned tree-structured filter banks [90]. For 

full and pruned tree-structured filter banks, FIR filters are used almost exclusively in practice 

because excellent M-channel FIR filter banks can be designed without worrying about the 

implementation issues associated with IIR filter banks. For this reason, we concentrate on 

designing architectures based on M-channel FIR filter banks. 

Synthesis of folded DWT architectures was accomplished in [73] by scheduling the fil- 

tering operations to hardware and then synthesizing the control using life-time analysis and 

forward-backward register allocation. Orthonormal DWT architectures based on the QMF 

lattice structure were developed in [77] by iteratively applying single-rate folding techniques 

[70]. The design methodology we have developed in [75] operates directly on the multi- 

rate algorithm description of M-ary tree-structured filter banks, including the DWT. This 

methodology simultaneously schedules and retimes the system to maintain low control com- 

plexity and low memory requirements in the synthesized architecture. The methodology has 

several attractive features. 
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• The methodology can be used to synthesize architectures for a wide class of multirate 

DSP algorithms while previous techniques were restricted to handle only synthesis of 

DWT architectures. 

• The methodology is simple because our scheduling algorithm and folding equations 

operate directly on the multirate algorithm description rather than first constructing 

an equivalent single-rate algorithm description. 

• The resulting architectures have simple control and low memory requirements. 

• The methodology accounts for pipelining so architectures can be designed for high- 

throughput and low power [80] applications. 

• The methodology provides a complete high-level description of architectures for any 

uniform implementation style, i.e., architectures which are bit-parallel, bit-serial, or 

digit-serial with fixed digit-size. 

5    High-Speed Digital Communications: 
HDSL/ADSL/VDSL 

In recent years, a consensus has been growing that the use of integrated digital network 

carrying all kinds of information ( speech, computer data, video, medical imaging, etc.) is 

imminent in the future. The right starting point to achieve this dream was to utilize the 

under-loaded telephony network for data communication. More efficient utilization of the 

telephony network, also known as the subscriber loop plant, for high speed digital communi- 

cation has been stirring much interest recently. The trends towards integrated networks and 

the investments involved make even a small improvement in the performance/cost tradeoff 

a worthwhile step. Using twisted pair telephone loops to transmit high speed data is a cost 

driven choice. This led to the introduction of the digital subscriber loop (DSL) as a way to 

denote transmitting digital information over subscriber loop plant. Fig. 18 shows the major 

two steps when connecting the central office to the end user. One main cable that has many 

subscriber loops in it connects the central office to the local distribution box, residing on 

the curb side. Many connections go from the distribution box to different end users. Due to 
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Figure 18: The Subscriber Loop Plant 

the replacement costs, the curb to the user connection is the most cost sensitive connection 

in the data communication link. This connection is also called the premises environment. 

Numerous high speed digital communication systems have been proposed for the digital sub- 

scriber loops. The High-speed Digital Subscriber Loop (HDSL) [91], was introduced as a 

step further from the DSL. As the video on-demand was a driving force for this investigation, 

there was no need for equal transmission rates in each direction of the communication link. 

Instead, more rate was given to the central office to the user direction on the expense of the 

user to the central office direction. That kind of topology was introduced as the Asymmetric 

Digital Subscriber Loop (ADSL) and Very High-speed Digital Subscriber Loop (VHDSL) 

[92] [93] [94]. Many systems have been proposed to maximize the system performance for any 

given channel. The performance is measured by the baud rate and the bit error rate at the 

receiver end. 

The Discrete Multitone (DMT) [95] [96] [97] and the Carrierless Amplitude/Phase mod- 

ulation (CAP) [98] [99] are two viable techniques for high speed digital transmission over 

copper wires. The Discrete Multitone system DMT, was recently introduced as a practical 

implementation of the known multitone channel. The CAP system is a QAM like modu- 

lation that was introduced in the seventies. The ordinary CAP scheme is a 2-dimensional 

modulation with Hilbert-pair signaling. 

In our research, the idea of expanding the CAP system beyond 2-D was investigated. This 

idea offers many potentials for improvement over the original CAP system.   One possible 
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advantage can be increasing the system throughput on the expense of the increased com- 

plexity and increased receiver interference energy. A 50% increase in the system throughput 

is possible by going from two-dimensional to three-dimensional signaling. Another possible 

application is in the area of the multiple access communication environment for the premises 

environment. This would allow multiple users to enjoy their own channels of communica- 

tions while they use the same physical communication link. We call this new technique 

Orthogonality Division Multiple Access (ODMA). 

The summary of the two techniques, DMT and CAP, is introduced in section 5.1. As 

our own investigation proved that the CAP system is more promising in terms of the per- 

formance cost tradeoff, the CAP system will be given more emphasis here. The feasibility 

of constructing 3-D signaling for the CAP and writing the problem in the form of an opti- 

mization problem is explained in section 5.2. Sequential Quadratic Programming was used 

to solve the optimization problem as a Minimax problem. The condition for perfect recon- 

struction (PR) with the 3-dimensional case is studied. The performance of the 3-dimensional 

system is tested with simulations for the unshielded twisted pair copper wires. A summary 

of the simulation results is introduced in section 5.4. The possibility of having higher dimen- 

sions to allow the multiple access option is introduced in section 5.3. This multiple access 

option allowed with higher dimensions for the CAP system will be suited for the premises 

environment. 

The Least Mean Square (LMS) adaptive algorithm is used in implementing the CAP 

receiver equalization, as it offers good performance with reasonable complexity. Pipelining 

the LMS using a moving average was previously developed [100]. As the performance of 

the moving average pipelining starts to degrade with larger LMS filters, a new IIR based 

relaxation for the LMS is introduced in section 5.5. The summary of this report as well as 

the directions for possible future work are explained in section 5.6. 

5.1    Background 

5.1.1    Motivation 

The problem of the DSL brought many interesting challenges in digital communications. 

Technically speaking, transmitting huge amounts of digital information over integrated net- 
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work has many possible solutions. The feasibility of each solution differs according to the 

specification needed and the amount of money that can be invested. First answer can be 

simply replacing the whole current network with fiber optic links. This solution is known 

as Fiber To The Home (FTTH). As FTTH involves unacceptable replacement costs, this 

solution is beyond the foreseen future [101]. Another possible scenario is to replace only the 

link between the central office and the distribution box. The link from the distribution box 

to the end user is left, as it is the most cost effective one. This solution is known as Fiber To 

The Curb (FTTC), and the bottleneck connection from the curb to the end user is called the 

premises environment. The FTTC has many advantages as it can support the IMTV [101] 

for multiple users per link, and it can be upgraded in the future FTTH. Another possible 

solution can be employed by leaving the copper wire links intact and trying to maximize the 

transmission throughput. Although it has minimal replacement costs, this kind of commu- 

nication link has severe limitation if compared to the FTTC and FTTH scenarios. The rates 

that need to be supported by this link are the Tl rate of 1.5 MHz and the DS1 rate of 6.1 

MHz. 

5.1.2    Discrete Multitone 

Most of the realistic channels have non-flat characteristics, which require a more sophisticated 

coding scheme to get closer to the theoretical limit of the channel capacity. In theory, one 

can achieve the channel capacity limit by transmitting a signal that has the same spectral 

shape of the channel. The theoretical limit for the channel capacity can be achieved with the 

water pouring solution [96]. One way to approximate the water pouring solution is by using 

the Discrete Multitone technique. With the DMT approach, the channel is approximated as 

a finite number of piecewise continuous subchannels, each with a flat characteristic. Each 

subchannel is then modulated separately with a QAM carrier which will generate a set of 

complex QAM symbols. The symbols generated are appended with their hermitian extension 

and passed through an IFFT block to get a sequence of real samples. At the receiver, an 

FFT block is used to retain the original set of symbols. The channel distortions including 

noise and interference will alter the value of the received symbols. For each subchannel, a 

separate equalizer is used to invert the effect of the channel and to suppress the distortion 
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Table 17: Finite word-length selection for ADSL: DMT 

No. of bits output error in dB 

double prec. -31 
12 -30 
8 -27 
4 -18 

added to the signal. Single-tap linear equalizers were previously suggested for such a scheme. 

Another post-channel equalizer is still needed to limit the interblock interference introduced 

by the channel memory. The full structure of the DMT transceiver is shown in Fig. 19. 

The blocks within the receiver are generally easy to implement for high speed applications, 

except for the equalization part. Pipelining techniques can be employed easily to achieve 

very high speed architectures for the FFT block. As only half the output of the FFT block 

is used, the FFT block can have reduced complexity by eliminating all redundant hardware. 

Using a bank of 1-tap linear equalizer would achieve acceptable performance with reasonable 

complexity. The effect of having finite word length was studied for implementing the DMT 

receiver. An 8-bit word length was found to give acceptable performance and allowed a VLSI 

implementation of the receiver equalizer (Table 1). 
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5.1.3      Carrierless AM/PM Transceiver 

Carrierless AM/PM (CAP) is a bandwidth efficient, 2-dimensional passband transmission 

scheme. The basic idea of the CAP system is to use two signals as signature waveforms to 

modulate two data streams. The bandwidth efficiency is achieved in two steps. The first 

step is by multilevel encoding of the data stream. Using 4-level encoding for each dimension 

will generate the so-called CAP-16. Fig. 20 shows the 2-dimensional signal constellation for 

the CAP-16. The other step for achieving bandwidth efficiency is using efficient signature 

waveforms. The theoretical limit of that parameter is achieved when using Nyquist signaling. 

Efficient shaping necessitates using signature signals that occupy more than one symbol 

period in time. 

Figure 20: 16-point signal constellation for CAP-16 

Extending the signature waveform will shrink the frequency domain characteristics of 

the signal. This extension of signature waveforms will lead to overlapping signatures of 

successive symbols. The design of the signature waveforms should ensure no intersymbol 

interference between consecutive symbols, and also no crosstalk between symbols in each 

dimension. In practice, different signals can be used to meet those criteria. Examples for 

that are the raised cosine signal and the square root raised cosine signal. 

The advantage of going to 2-dimensional signaling is to be able to retain the same band- 

width efficiency for a passband signal. The two orthogonal signals used as signature wave- 
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forms are modulated versions of an original baseband signal, and are given by 

Mt) 

h(t) 

g(t) cos2ivfct 

g(t) sin 2nfct, (44) 

where g(t) is the baseband signal and fc is a frequency that is larger than the largest frequency 

in g(t). The pair {/i,/2} is called Hubert pair. Fig. 22 shows the time domain modulated 

raised cosine signature waveforms and the normalized frequency characteristics for symbol 

rate of 25MHz. 

The structure of the CAP transceiver is shown in Fig. 21. The data stream is scrambled 

into two symbol streams, and each is modulated with the corresponding signature waveform. 

The receiver is implemented in adaptive fashion to invert both the channel and the signature 

filters and retrieve the original sequence of symbols. Many topologies can be used to imple- 

ment the receiver such as the linear equalizer and the decision feedback equalizer. The major 

challenge in designing the receiver is to guarantee perfect reconstruction (PR) of the original 

sequences. The transmitter, as well as the receiver, are implemented in a digital fashion. 

The transmitter signature filters are implemented as fixed finite impulse response (FIR) fil- 

ters. To implement the system with that topology, the sampling rate of the implementation 

must be high enough to prevent aliasing effects. For that implementation, the input symbol 
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Figure 22: Two Signature Waveforms Over a Span of 6T in Time and Frequency 

sequences are up-sampled (usually by a factor of 4 or 5) to match the implementation sample 

rate. The performance of the CAP-16 system is found to be acceptable in terms of system 

throughput and receiver bit error rate for the unshielded twisted pair environments. 

5.2    Three-Dimensional CAP 

One option to increase the CAP system throughput is by increasing the number of levels 

in the multilevel encoding. This means going to larger signal constellation sizes; CAP-32, 

CAP-64, CAP-128 etc. Another idea is by using higher dimension signaling. The idea 

is based on modulating the data streams using more than two signature waveforms. The 

major obstacle in designing the signals used as signature waveforms is the orthogonality over 

multiple symbol periods. 

Examining the original 2-dimensional CAP system as shown in detail in Fig. 23 shows it is 

a multirate transmultiplexer problem. The channel and the interferences are taken out from 

the figure to emphasize the problem we are solving. {s0, Si, $2} are tne three input sequences, 

scrambled from the input bit stream. After going through the multirate transmultiplexer, 

the output sequences, {SQ, S~1; S2}, are needed to be as close as possible to the input sequences. 
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Figure 23: Expanding the 2-D CAP into 3-D CAP 

The receiver equalizer solves the problem to find the perfect reconstruction (PR) solution. 

The transmultiplexer has the multiple input multiple output transfer matrix T [102] 

T GTH, (45) 

where G, and H are the polyphase phase decomposition matrices for the receiver and the 

transmitter, respectively, and T is a permutation matrix that depends on the different number 

of delays inserted in the system filters. It can be easily shown that PR at the receiver end 

can be achieved if and only if 

z~nI, (46) 

where I is the identity matrix and z~n denotes n delay elements. For proper system design, 

the receiver must be implemented with FIR topology. If this is not met, the adaptive 

equalizer at the receiver will be an IIR adaptive filter, which would not be tractable. In 

this article, the PR condition will always be assumed to have FIR receiver topology. The 

minimax optimization algorithm was performed to find three signals that can be plugged into 

a PR system with FIR receiver topology. The optimization used was based on Sequential 

Quadratic Programming method [103]. The optimization problem is stated mathematically 

as finding the set {/0, A, /b}, that solves 
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m™{foJuf2}max{\F-R\) 

s.t. GTH = z~nI, 

where F is the frequency characteristics of the signals set {/o,/i,/2}> R is the passband 

frequency response of the raised cosine pair, and G is found by inverting H to obtain the 

polyphase decomposition of the receiver filters. The three signals found using the minimax 

optimization approach are plotted in Fig. 24.   The advantage of having three dimensions 
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Figure 24: Solution of Optimization Problem: 3 signals in Time and Frequency Domains 

over the 2-D CAP is to allow 50% increase in throughput on the expense of increased system 

complexity and 2 to 3 dB of receiver error. 

5.3    ODMA 

The concept of three-dimensional CAP can be extended to more dimensions, opening the 

door for multiple access option. As the signals generated using that scheme are orthogonal 

in nature, we call this technique Orthogonality Division Multiple Access (ODMA). Fig. 25 

shows the possible structure for ODMA. Simulations were carried out to test the feasibility of 

ODMA. Signals were generated using the same optimization problem defined in the previous 

section. If we have the overall symbol rate to be constant 1/T, We can allow the transmission 
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to take place using K orthogonal signals. The upsampling of each stream is kept at IK. 

This means we don't have any increase in the system throughput, but rather we have the 

multiple access option. Simulations were carried out to generate 4-D and 6-D signals. Fig. 26 

along with Fig. 22 give the signals designed for 4-D ODMA. The signals were designed for 

upsampling of 8, and are to carry the same 2-D symbol rate. The limit on the number of 

signals that can be generated still needs more investigation. 
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Figure 25: ODMA 

5.4    Simulation Results 

Simulations were carried out to test the functionality of the proposed 3-D CAP system over 

the UTP copper wire. The channel was inserted in the transmultiplexer problem, and the 

receiver PR is performed with linear adaptive equalizer. Using the EIA/TIA-568 standard for 

unshielded twisted pairs of categories 3 and 5, the PR condition was met using the adaptive 

linear equalizer. Fig. 27 shows the 3-dimensional signal constellation at the receiver end 

for the category-3 cable case with no near end crosstalk (NEXT). Similar performance is 

achieved for category-5 cables. Fig. 28 shows the signal constellation for the category-5 case 
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Figure 26: 4-D, in time and frequency 

in the presence of NEXT. The adaptive linear equalizer achieves PR at the receiver and the 

adaptation rule used is the LMS algorithm. 
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Figure 27: Three Dimension Constellation 

5.5    LMS Relaxation 

Pipelining is a major technique for developing high speed digital signal processing (DSP) 

architectures. The pipelining offers an increase in the sampling rate by reducing the critical 

path propagation delay. Pipelining of adaptive filters is made difficult due to the coefficient 
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Figure 28: PR for Category-5 UTP, with NEXT 

update loop. Keeping the input-output relation of the serial LMS while inserting lookahead 

delays in the architecture closed loops introduces a very expensive hardware overhead. 

The relaxed lookahead LMS is an approximation of the LMS that can be pipelined. It 

is obtained by relaxing the constraint of maintaining the exact input-output mapping. The 

input-output relation is maintained only in the stochastic sense. To introduce D\ delays 

in the outer loop and D2 delays in the inner loop, the input-output relation becomes very 

complicated. The approximation introduced in [100] will lead to the following simple filter 

equations; 

W(n)   =   W(n - D2) + Z{n) 
LA-l 

Z(n)   =   fj. J2 e(n - Dx - i)U{n - Dx - i) 
i=0 

e(n)   =   d{n)-WT{n-D2)U(n), (47) 

where WT(n) = [wi(n),w2{n),....wN(n)] is the filter tap weights, U(n) is the input vector, 

and Z(n) is the feedback weight update variable . LA is called the lookahead factor, and we 

should keep LA < D2. The relaxed LMS is essentially the serial LMS with delays inserted 

in the closed loops and a moving average block is added to compensate for the performance 
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degradation of the filter. Fig. 29 shows the closed loop of only one tap with the delays 

inserted. This approximation introduces added error to the serial LMS misadjustment. The 

misadjustment for small LMS update factor p and large N can be written for a normalized 

power environment as; 

aNß 
M (48) 

2-(oJV/x)' 

where a is a factor determined by the input sequence eigen-structure. The misadjustment 

can be expanded with higher powers of // neglected as; 

M   =   ^(1 + ^). (49) 

It is apparent from this equation that the relative misadjustment increases with the filter 

order, N, as illustrated in the previous equation. 

Relaxation of LMS Compensation 

Dl delays in the outer loop 

Figure 29: Relaxed Lookahead LMS 

Another approximation is introduced by replacing the MA compensation with a fixed 

one-pole IIR filter as shown in Fig. 30. The system equations will be: 

W(n)   =   W{n-D2) + Z(n) 

Z(n)   =   aZ{n - 1) + e(n - Dx)U{n - Dx) 

e(n)   =   d(n)-WT(n-D2)U(n), (50) 
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where "a" is the IIR fixed coefficient. The compensation block overhead can be significantly 

reduced if the the value of "a" is restricted to 2~k, for integer values of k. The implementation 

of the coefficient will be a simple shift operation. The IIR relaxation can offer up to 3dB 

improvement over the relaxed lookahead technique. 

5.6    Concluding Remarks 

During the course of this project, a set of new tools were developed to facilitate the design 

and implementation of line equalization for the HDSL/ADSL/VDSL applications. IIR based 

relaxation for the LMS was found to have better performance as compared to the relaxed 

LMS. This improvement increases for large LMS filters. The DMT receiver was implemented 

for finite word length, and with significant reduction in hardware costs. The CAP system 

was studied for multi-dimensional signaling. Expanding the ordinary 2-dimensional CAP 

into higher dimensions offers a practical solution for throughput increase without the need 

to increase the number of levels in the multilevel encoding. The PR condition with FIR 

receiver topology was achieved by finding the suitable signals for the transmitter. Minimax 

optimization proved to be a convenient tool for designing the required signals. Expanding 

the system into even higher dimension looks possible, but the problem still needs more 

investigation. Although the final bit error rate of the 3-D system is few dB worse than the 

2-D system when using linear equalizer, the overall system performance remains acceptable 

for the UTP environment. The advantage of not using more levels of the encoded signal 

becomes apparent when implementing the receiver equalizer. Increasing the number of levels 
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per dimension makes it more difficult for the equalizer to identify each level. Another frontier 

that is opened by the multi-dimensional CAP is the ODMA. More work is still needed to 

investigate the full potential of the ODMA. 

6    Finite Field Arithmetic and Reed-Solomon Coders 

Finite field arithmetic operations have received a lot of attention because of their important 

and practical applications in cryptography, coding theory, switching theory, and digital signal 

processing. The finite field GF(2m) has 2m elements and each of them is represented by m 

binary digits based on the primitive polynomial f{x). For such representation, addition and 

subtraction are bit-independent and relatively straight-forward. However, multiplication, 

exponentiation and division are much more involved. Hence design of efficient architectures 

to perform these arithmetic operations is of great practical concern. In this project, several 

novel architectures on finite field multiplication and exponentiation have been derived and 

their advantages have been compared with some existing architectures. 

Reed-Solomon codes are the most frequently used error control codes with applications 

ranging from digital audio disc players to the spacecraft. Its encoding and decoding pro- 

cess makes use of finite field arithmetic. Therefore, based on one of the proposed efficient 

multiplication algorithms, an efficient Reed-Solomon encoder has been derived during this 

project. 

Four papers were published in this area. In this report, the main results are summarized 

in the order of their publication time as following: 

1. Efficient power based Galois Field arithmetic architectures [104]. 

2. Low latency standard basis GF(2m) multiplier and squarer architectures [105]. 

3. Efficient standard basis Reed-Solomon encoder [106]. 

4. Efficient finite field serial/parallel multiplication [107]. 
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Figure 31: System Level diagram for Proposed New Architecture 

6.1    Efficient Power Based Galois Field Arithmetic Architectures 

The concept of representing the finite field elements in terms of the primitive element a has 

been utilized to derive a new architecture to perform a general operation like ABn + C [104]. 

Once the elements are expressed in terms of the primitive element a, the power of the result 

can be computed, i.e., the power need to be added for multiplication, subtracted for division 

and multiplied for exponentiation. After that, the power of the result can be converted to 

conventional basis representation. Fig. 31 shows the system level diagram of the proposed 

architecture. 

6.1.1    Conversion to Power 

In the conventional basis representation, each element of GF(2m) can be represented as a 

sum of l,a,a2, am_1. If we use 2m_1 bits to represent power, i.e., each bit represents 

a particular power, we can get the power of a particular operand by a logical AND of m 

i/p variables a0,a1,a2,...,am~l. In this architecture, the operand B is converted into the 

power form while the operand A is left in the conventional basis. The output of this block 

has 2m - 1 bits with each bit corresponding to a power of a. 

Example. B = a3 + a = a9, at the output of this block, the bit corresponding to a9 is 

set to 1 while the rest of bits are all set to 0. 
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Figure 32: Result Computation Module 

6.1.2    Result Computation 

Given an element in its power form, exponentiation Bn is equivalent to multiplying the power 

and computing the result mod 2m - 1. This computation can be done apriori provided n 

is known. 

For multiplication ABn, let 

Bn bpa
p 

ao + aid + ... + am-ioi m— 1 (51) 

where 0 < p < 2m - 1. Then, 

ABn = a0bpa
p + aibpa

p+1 + ... + am_i&po
p+m-1. (52) 

The architecture to perform this operation is shown in Fig. 32. Notice that in general to 

perform summation in GF(2) we need an XOR gate, but in this case for each a\ at most 

only one of the contributing terms will be 1 and therefore the XOR can be replaced by an 

OR gate. Thus, for each power bit, we need m (2 input) AND and m-1 (2 input) OR gates. 

The {dj}'s for 0 < i < 2m - 1 are computed using 2m - 1 circuits similar to Fig. 32 and 

these are inputs to the conversion unit to convert the result ABn from power to conventional 

basis. This result can then be added to C as shown in Fig. 31. 

Example. (Conf) In our Example, b6 = 1. Thus, only terms d& through d9 could be 1. 

Rest of rfi's are 0. Also, A — a2 + a, therefore, a2 = a\ = 1 and a3 = a0 = 0. Computing de 

through dg, we get 

d6   =   0.0 + 1.0 + 1.0 + 0.0 = 0 

71 



12 13 14 

* ' 

8 9 10 11 

\ ', _ "^ ',-~ >■*! t 

4 5 6 7 

\ ', _ 

0 1 2 3 

Figure 33: New Encoder Architecture 

d7 = 0.0 + 1.0 + 1.1 + 0.0 = 1 

d8 = 0.0 + 1.1 + 1.0 + 0.0 = 1 

d9   =   0.1 + 1.0 + 1.0 + 0.0 = 0. 

6.1.3    Conversion to Conventional Basis 

To convert from power to conventional basis, we can utilize a 2m to m encoder. This would, 

however, require m XOR gates each with 2m_1 inputs. This exponential dependence of the 

number of i/ps to a gate on m is clearly not a desirable property from VLSI implementation 

viewpoint. 

Utilizing the property of Galois Field GF(2m) that each element can be represented as 

a sum of 1,a,a2,...,am_1, it is, however, possible to tradeoff the number of inputs with 

the number of gates required for encoding. This new encoder architecture is illustrated in 

Fig. 33 for GF(24) generated by a4 = a + 1. In Fig. 33, each of the box marked i receives di 

from the result computation module as an input and performs XOR operation of this and 

other inputs associated with this box. After 3 delays, the element's representation will be 

available in the conventional basis. In general, such an architecture for the encoder will need 

0(2m) XOR gates while the 2m to m encoder needs m(2m'x - 1) gates [108]. 
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Table 18:   Summary of Hardware Requirements 

Item/Operation Massey-Omura [109] Architecture of [110] New Architecture 
Basic Cell   • O(0.5m2) AND , 

O(0.5m2) XOR 
m2 AND 

m(m+k) XOR 
2m-1 AND , 
m - 1 OR, 1-2 XOR 

ABn m2 copies 2m-1 copies 2m — 1 copies 
Latency m+1 2m2 + 3m O(m) 
Time step O(\log20.5rri2] )XOR, 1 AND AND, XOR 0(m- \log2m\) XOR 

6.1.4    Comparison with Other Architectures 

The proposed architecture has been compared with the Massey-Omura architecture [109] 

and the exponentiation architecture presented in [110]. The comparison will be in terms of 

2 input gates. 

In general, for GF(2m), the Massey-Omura architecture requires m2O(0.5m2) AND and 

XOR gates. The latency is m + 1 time steps where each time step has the delay of 

O(\log20.5m2~\ )XOR and 1 AND gate. 

The architecture presented in [110] requires 2m - 1 multipliers where each multiplier 

needs m2 AND and m(m + k) XOR gates where k is the number of non-zero terms in the 

primitive irreducible polynomial used to generate GF(2m). The latency is 2m2 + m time 

steps where each time step is the delay of AND followed by a XOR gate. 

Our architecture requires (2m - l)(2m - 1) AND, (m - l)(2m - 1) OR and <3(2m - 1) 

XOR gates. The latency is also 0(m) time steps where each time step is the delay of 

0(m - \log2rn\) XOR gates. 

These results are summarized in Table 18. We consider GF(2m) generated by a primitive 

irreducible polynomial with k non-zero terms. The throughput rate for all the architectures 

is 1 result every clock cycle. 

It is apparent from Table 18 that the proposed new architecture has a low latency. It 

is also hardware efficient for m < 6. For larger finite fields, the architecture proposed in 

[110] is more hardware efficient. The architecture proposed in [111] is based on a square and 

multiply algorithm for exponentiation. It utilizes parallel-in-parallel-out multipliers based 

on a standard basis representation. It was shown in [112] that in general the standard basis 

multipliers have lower design complexity and are easier to extend to large finite fields because 
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Figure 34: Parallel-in-Parallel-out GF(24) Multiplier 

of their simplicity, modularity and regularity in architecture. It is also easier for architec- 

tures based on standard basis representations to allow programmable primitive irreducible 

polynomials, thus providing the user with greater flexibility in system design. 

6.2    Low Latency Standard Basis GF(2m) Multiplier and Squarer 
Architectures 

6.2.1    Parallel-in-Parallel-out Multiplier 

6.2.1.1 Multiplier Architecture 

A low latency (latency of m + 1) standard basis GF(2m) multiplier has been proposed in 

[105]. It is a semi-systolic architecture which makes use of two broadcast signals. The system 

level diagram of this parallel-in-parallel-out multiplier is shown in Fig. 34. This multiplier 

has m2 basic cells and the structure of the basic cell is shown in Fig. 35, which has 2 2-input 

AND, 2 2-input XOR gates and 3 1-bit latches. The parameter C'= EfcU* ckaki an element 

of GF(2m), is also an input to the multiplier so that the circuit actually performs AB + C. 

6.2.1.2 VLSI Chip Implementation 

A prototype VLSI chip was designed using CMOS 1.2 //m n-well technology. The chip layout 

is shown in Fig. 36. The chip implements the multiplication algorithm shown in Fig. 34 for 

GF(24).   A true single phase clocking scheme [113] was used for the chip.   The chip is a 
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multistage pipeline and can produce one result every clock cycle. The chip has an active 

area of 0.434 mm2 and requires 1076 transistors and is programmable for different primitive 

irreducible polynomials. The design has been functionally verified using irsim [114]. Using 

Hspice simulator, the critical path was found to be 2.7ns. 
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Figure 36:   Layout of the proposed multiplier chip 

6.2.1.3    Comparison with Other Multipliers 

The properties of the proposed multiplier are compared in Table 19 with those of the multi- 

pliers in [115] [116]. The comparison has been done for variable multiplier and multiplicand 

and programmable primitive irreducible polynomials with all architectures producing 1 result 
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Table 19:   Comparison of Different Multipliers 

Item Standard Basis [4] Dual Basis [17] Proposed 
Number of basic cells 2 vnr m m2 

Basic Cell 2 2-input AND , 
2 2-input XOR, 
7 1-bit latches 

2m 2-input AND, 
2m 2-input XOR 
3m 1-bit latches 

2 2-input AND, 
2 2-inputXOR 
3 1-bit latches 

Latency 3m m+1 m+1 
Time step 1 2-input AND and 

1 2-input XOR gate 
1 2-input AND and 

\log2(m — 1)] 2-input XOR gate 
1 2-input AND and 
1 2-input XOR gate 

every clock cycle. The comparison is again done in terms of 2-input gates. 

It is worth noting that the proposed multiplier needs less than half the number of latches 

required in previous implementation [115] while maintaining the same critical path. The 

system latency has also been reduced to m +1 (assuming the outputs also are latched) from 

3m. Compared to the architecture of [116], the proposed multiplier has the same hardware 

and system latency but there is a reduction in the critical path from 1 AND gate followed 

by \l0g2m~} XOR gate to an AND gate followed by a XOR gate. The price we pay for 

this reduction in hardware requirement and system latency is to allow two signals to be 

broadcast. 

6.2.2    Parallel-in-Parallel-out Squarer 

6.2.2.1    Squarer Architecture 

In a finite field, 

(a + ß)2 = a2 + ß2 (53) 

where a, ß e GF. Using this property of finite field, we develop a hardware efficient squarer 

for finite field. We shall illustrate this with an example for GF(24). Squaring operation can 

be represented by 

A   =   a0 + (Xia + o2a
2 + 0,3,0? 

A2   =   a0 + aid2 + a2a
4 + a3a

6. (54) 

To obtain the result in the standard basis, we need to express a4, a6 in terms of {1, a, a2, a3 

}, i.e., in the standard basis representation. This can be achieved using the squarer shown 
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in Fig. 37. The squarer consists of m[m/2\ basic cells. The inputs to the squarer are 

C = a0 + aiQ2, B = aA, a2,a3,f and /', where /' denotes the primitive polynomial f 

multiplied by a. The first column computes Ba,2 + C and Bo? while the second column 

outputs the desired result 

a0 + a\a2 + a2a
4 + a3a

6 

C + Ba2 + Ba2a3. 

(55) 

The basic cell in the squarer performs multiplication by a2 and is shown in Fig. 38. The 

squarer is semi-systolic where each basic cell needs 4 latches. A fully systolic version would 
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Table 20:   Comparison of Different Approaches to Squaring 

Item Multiplier Power-sum [117] Proposed 
Number of basic cells 2 mr 9 mr m[m/2\ 

Basic Cell 2 2-input AND , 
2 2-input XOR, 
3 1-bit latches 

3 2-input AND, 
3 2-input XOR 
10 1-bit latches 

3 2-input AND, 
3 2-inputXOR 
4 1-bit latches 

Latency 3m 3m [m/2\ + 1 
Time step 1 2-input AND and 

1 2-input XOR gate 
1 2-input AND and 
1 3-input XOR gate 

1 2-input AND and 
1 3-input XOR gate 

need 10 latches. 

This squarer can be easily extended to a larger finite field. In general, for GF(2m), we 

need [m/2\ columns where each column comprises of m basic cells. In the general case, the 

B input to the first column is am or am+1, i.e., 

B   =   /, for even m 

—   /') for °dd m. 

(56) 

Also note that we can use degenerate versions of the basic cell in the rightmost column 

and in the bottom row because some of the outputs are not needed. 

6.2.2.2    Comparison with Other Designs 

Table 20 compares the proposed squarer with a dedicated multiplier and the power-sum 

circuit [117]. The comparison is again done in terms of 2-input gates and all architectures 

produce 1 result every clock cycle. 

The proposed squarer results in hardware savings of more than 50 % over using the 

power-sum circuit of [117] and savings of more than 25 % over a dedicated multiplier to 

perform the squaring operation. The system latency has been reduced to Lm/2J + 1 from 

3m without any increase in the critical path. 
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6.2.3    Parallel-in-Parallel-out Exponentiator 

6.2.3.1 Exponentiation Algorithm 

Let a be an arbitrary element in GF(2m) and we need to raise it to power N{\ < N < 2m-l). 

Note the range 1 < N < 2m -1 is sufficient to cover the entire range of N because a2"1-1 = 1 

and hence 

aN = aN mod 2--l_ (57) 

The exponentiation operation can be performed using the following equation: 

= an°.(a2)ni.(a22)n\ ... (a2"1-1)"-1 (58) 
m—1 

i=0 

where, 

Ei=   {a2Y   = <**, ifrn = l (59) 

= 1, if rii = 0 

Therefore, the exponentiation operation can be performed recursively. Fig. 39 shows the 

flow chart of this recursive algorithm. 

6.2.3.2 Exponentiator Architecture 

The square and multiply operations in exponentiation can be implemented using the bit- 

level pipelined multiplier and squarers developed in the previous sections. The architecture 

for a bit-level pipelined exponentiator is shown in Fig. 40. This architecture consists of 

(m - 1) GF(2m) multipliers, (m - 1) GF(2m) squarers and m, m bit MUXes. The squarer 

SQi evaluates a* for i =1,2,..., m - 1. The multiplexor MUXt sets E{ = o?\ if n{ = 1 else 

Ei is set to 1. The multiplier MULi evaluates Ri for i = 1,2 ..., m — 1. 

It is easy to verify that this architecture will compute ß = aN. Notice again that the 

multiplier and squarers used are pipelined at the bit-level and hence this architecture can 

accept one new input every clock cycle where the clock period is determined by the delay 
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Table 21:   Comparison of exponentiators 

Item Exponentiator [9] Proposed 
Number of multipliers 2(m-l) m-1 
Number of cells in multiplier 9 9 m 
Basic Cell in Multiplier 2 2-input AND , 

1 3-input XOR, 
7 1-bit latches 

2 2-input AND, 
2 2-input XOR 
3 1-bit latches 

Number of Squarers - m-1 
Number of cells in squarer - m[m/2\ 
Basic Cell in Squarer 3 2-input AND, 

3 2-input XOR, 
3 1-bit latches 

Latency 2m2 + m m(m - 1) + [m/2J + 1 
Time step 1 2-input AND and 

1 3-input XOR gate 
1 2-input AND and 
1 3-input XOR gate 

of a 2-input AND gate followed by a 3-input XOR gate. The architecture is a parallel-in- 

parallel-out architecture which can yield 1 output every clock cycle. 

6.2.3.3    Architecture Comparison 

The properties of the proposed bit-level pipelined exponentiator are compared with the 

exponentiator of [110] in Table 21. Both the architectures produce 1 result every clock cycle. 

It is worth noting that in the proposed exponentiator architecture, the primitive irre- 

ducible polynomial / can be shared between the multiplier and the squarer. This effectively 

reduces the number of latches needed in each basic cell of the squarer to 3. 

Prom this table, we can see that the proposed exponentiator results in hardware savings 

of 12.5% over [110]. We have also reduced the system latency to m(m — 1) + [m/2\ +1 from 

2m2 + m without any change in the critical path. 

6.3    Efficient Standard Basis Reed-Solomon Encoder 

An efficient Reed-Solomon (RS) recoder has also been presented during this project [106]. 

The hardware complexity is identical to the well-known Berlekamp dual basis encoder. How- 

ever, it offers two advantages -a critical path independent of the order of RS codes being 
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implemented and the ability to encode without any need for basis conversion. 

6.3.1      Reed-Solomon Encoding Algorithm 

Systematic RS encoding can be described by 

v(x) = xn~ku(x)+ < xn ku(x) >flt(l), (60) 

where gt(x) is the generator polynomial of a terror correcting RS code, < xn~ku(x) >gt{x) 

denotes the remainder when xn-ku(x) is divided by gt(x). This equation assures that v(x) 

is a multiple of gt(x) and the code is systematic. The block diagram of RS encoder is given 

in Fig. 41. 

6.3.2    Reed-Solomon Encoder 

The proposed RS encoder is based on the new semi-systolic multiplier in [105]. This standard 

basis multiplier computes A, Aa, •■■, Aam~l in sequence and performs a scalar multiplication 

of these vectors with bo,bu-',bm-i, respectively. These partial products are added to 

compute the multiplication AB. The computation of the vectors A, Aa, • • •, Aam~l can be 

shared if we need to multiply one term A with a number of terms simultaneously. Suppose, 

we need to compute Pi = ABX and P2 = AB2 at the same time. Then, 

m—1 

Px   =   i4Ö!= J3(^a*)*ifc (61) 
Jfc=0 
m—1 

P2   =   AB2= £(Aafc)&2Jk. 
fc=0 
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The above equation illustrates that the computation of A, Aa, • • •, Aam~1 can be shared 

between the computation of the products Pi and P2. Once these vectors are computed, 

they can be simultaneously multiplied to B\ and B2 to obtain the products Pi and P2. 

This approach can also be extended to any number of simultaneously multiplications. As 

can be seen from Fig. 41, there exist a broadcast signal in RS encoder, which is composed 

of m bits and this symbol is multiplied by r coefficients of the generator polynomial gt(x) 

simultaneously. Therefore, the substructure sharing idea can be utilized to derive efficient 

RS encoder. 

The basic cell for implementing (61) is shown in Fig. 42, which can also be used as the 

basic cell for RS encoder. For RS encoder over GF(24), the proposed structure consists of 

16 cells identical to the basic cell shown in Fig. 42. The critical path consists of 1 2-input 

AND gate followed by 1 2-input XOR gate. 

In general, for a (n,k) RS encoder with symbols from GF(2m), the proposed encoder 

would consist of m2 basic cells. Each basic cell would have (n — k + 1) 2-input AND gates, 

(n - k + 1) 2-input XOR gates and (n-k+2) 1-bit latches. The critical path in the proposed 

RS encoder is independent of the order of the RS code being implemented and is equal to 

the propagation delay of 1 2-input AND gate followed by a 2-input XOR gate. 
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Table 22:   Comparison of exponentiators 

Item Berlekamp's Proposed 
Number of basic cells m m2 

Basic Cell m{r + 1) 2-input AND, 
m(r + 1) 2-input XOR, 
ra(r + 2) 1-bit latches 

r + 1 2-input AND, 
r + 1 2-input XOR 
r + 2 1-bit latches 

Latency m + 1 m+1 
Critical Path 1 2-input AND and 

\log2{m — 1)] 2-input XOR gates 
1 2-input AND and 
1 2-input XOR gate 

Basis Conversion Yes No 

6.3.3    Comparison with Berlekamp's Dual Basis RS Encoder 

The properties of the proposed RS encoder are compared with the well-known Berlekamp's 

encoder in Table 22. The comparison is done for a (n,k) RS encoder over GF(2m) and 

the generator polynomial having r = n — k coefficients. The generator polynomial and the 

primitive polynomial are both programmable. 

6.4    Efficient Finite Field Serial/Parallel Multiplication 

6.4.1    Bit-Serial Finite Field Multiplier 

A new bit-serial/parallel finite field multiplier has been presented in [107] with standard 

basis representation. This design is regular and well suited for VLSI implementation. As 

compared to existing serial/parallel finite field multipliers, it has smaller critical path, lower 

latency and can be easily pipelined. When it is used as a building block for large systems, it 

can achieve more savings in hardware in the broadcast structures by utilizing sub-structure 

sharing techniques which has been introduced in last section [106]. 

6.4.1.1    Multipier Architecture 

The proposed design is semi-systolic with bi-directional data flow.   It utilizes LSB first 

implementation based on the following equation 

C   =   AB mod f(x) 

—   (Ab0 mod f(%)) + (Abia mod f(x)) 
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+(Ab2a? mod f(x)) H  

+(J46m_iam"1 mod f(x)) 

=   b0A + bi(Aa mod f(x)) 

+b2{Aa2 mod f(x))-\  

+brn_l(Aam-1 mod f(x)), 

(Aak~l)a = Aak 

fc-i 

(62) 

(63) 

where C^ = ^ AbiOt1, and C^—0. Fig. 43 shows the overall architecture. 
i=0 

It contains three parts. The upper part is a linear feedback shift register (LFSR) with 

/i's as the coefficients. The concepts and properties of LFSR can be found in [118]. Here 

it is used to perform one-bit shifting followed by mod f(x) operation, which essentially 

is multiplication by a. The middle part is partial product generator. The lower part is 

accumulation part. 

Bits of multiplicand are loaded to LFSR in parallel every m clock cycles. Multiplier bits 

are loaded serially. Once one multiplication is complete, the final product is transfered to 
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Table 23: Comparison with Systolic-array based Architecture 
Properties Wang et al. [119] Proposed 
Resources 3m 2-input AND 

m 3-input XOR 
9m latches 
m 2-to-l MUXes 

2m 2-input AND 
(2m-l) 2-input XOR 

(4m+2) latches 
4m 2-to-l MUXes 

# of Transistors 176m 104m+24 
Latency 3m m+1 
Critical Path 1 2-input AND 

+ 1 3-input XOR 
1 2-input AND 

+ 1 2-input XOR 

a parallel-in serial-out (PISO) register and shifted out serially. One control signal is needed 

for I/O multiplexing and initializing accumulation latches once every m clock cycles. 

6.4.1.2    Comparison with Other Designs 

The comparison in this section is based on the following assumption. 

• Multiplication is over GF(2m) and primitive polynomial f(x) is programmable. 

• Both multiplicand and multiplier are assumed to be programmable for flexibility con- 

siderations. 

• 3-input XOR gate is implemented using two 2-input XOR gates. 

The properties of the proposed serial/parallel multiplier are compared with one systolic 

array realization [119] in Table 23. The proposed design has less number of latches and has 

a smaller latency. 

This design is also compared with existing serial/parallel architectures in Table 24. All 

multipliers in Table 24 make use of broadcast signals. The I/O cost, including serial/parallel 

converter and MUXes are ignored in Table 24 because all these three designs have the same 

I/O cost. It is worth noting that the proposed design has smaller critical path and smaller 

latency compared with [120]. The multiplier in [121] is based on MSB first algorithm, i.e., 

the multiplier bits are loaded serially with most significant bit first. The disadvantage is 

that it performs multiplication by a and accumulation in serial every clock cycle, hence need 

a 3-input Xor gate in accumulation part. Furthermore, when used as a building block for a 
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Table 24: Comparison with other serial/parallel Architectures 
Properties [121] Hasan et al. [120] Proposed 
Resources 2m MUXes 

(m-1) 3-input XOR 
1 2-input XOR 
(4m+2) latches 

(3m-1) 2-input AND 
(3m-2) 2-input XOR 
(4m+l) latches 
1 switch 

2m 2-input AND 
(2m-l) 2-input XOR 

(4m+2) latches 

# of transistors 88m+24 100m-2 88m+24 
Latency m+1 2m+2 m+1 
Critical Path 1 2-input AND 

1 3-input XOR 
1 2-input AND 
+ f002 (m-1) 2-input XOR 

1 2-input AND 
+ 1 2-input XOR 

Hardware Utilization 100% 50% 100% 

larger system, the proposed multiplier can achieve less than linear increase in hardware as 

the number of multipliers increases by substructure sharing. However, there is no straight- 

forward way to apply substructure sharing technique to the multiplier in [121]. 

6.4.2    Generalized Serial/Parallel Finite Field Multiplication 

In [107], two general digit-serial multiplication algorithms are presented. They can be used 

to derive efficient bit-parallel algorithms for finite field serial/parallel multiplication. The 

optimal primitive polynomials over GF(2m) (for 2 < m < 9) are provided which will generate 

structures with minimum hardware complexity and relatively more flexibilities for feasible 

digit-sizes. A multiplier over GF(2m) has been given as an example in [107] showing how 

to derive efficient multiplier structures using the proposed algorithm. This multiplier has 

less number of transistors, smaller critical path and consumes less power compared to the 

existing semi-systolic architecture. 

6.4.2.1    Digit-Serial Multiplication Algorithms 

Assume digit-size = D.   Let d denote the total number of digits and d 
m—\ d—\ 

A = ^2 aia^ B = Yl BiaD\ where 
i=0 i=0 

\m/D].   Let 

,    for0<i<d-2 

Bi  =  < 

(  D-\ 

]T bDi+ja
] 

j=0 
m-l-D(d-l) 

Y,      bpi+ja3    ,    for i = d-l 
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d-1 

Then C = A ■ B mod f(x)  = A ■ "Y^BioP1 mod f(x). We have the following two equations: 

C   =   ( AB0 + AaDBx + AoP ■ aDB2 + ■ ■ ■ 

+AaD(d-2) . aDßdi ) mod ffä) 

=   (B0A + Bi(A-aD mod f(x)) 

+B2(AaD ■ aD mod f(x)) + ••• 

+Bd_1{AaD(d-2) • oP mod f{x) ) mod f(x) (64) 

for the least significant digit (LSD) first scheme and 

C   =   (((((•••(( (ABd_! mod f(x) )■ aD + ABd_2 ) mod f(x) )• oP 

+ •••)• <*D) + ABi) mod f(x) )aD + AB0 ) mod f(x) (65) 

for the most significant digit (MSD) first scheme. Hence we have two algorithms for digit- 

serial/parallel multiplication. 

Algorithm 1 (LSD first) 

1. C<°>  = 0, for i = 0; 

2. At ith iteration, (1 < i < d — 1) 

(Aa^-V) ■ aD mod f(x) = AaDi mod f(x) 

(AaW-VBi-!) + C^"1)  = C« • (66) 

m+D-2 m-1 

where C« =    £   CfoJ, AaDi mod f(x) = X>}V; 
j=o j=o 

3. At dih iteration, 

AaW-V-B^ + CV-t^CW; (67) 

4. Correction. Product of A and B is (C^ mod f(x)). 

D 

Algorithm 2 (MSD first) 
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1. C(°)  = 0, for i = 0; 

2. At ith iteration, (1 < i < d) 

C(i)    =   ( C(i-l) . aD + ABd_. ) mod f(x^ (6g) 

m—1 

where C« = E^f^'- 
i=o 

D 

Two essential steps in above algorithms are computing the partial product A • B{, and 

computing the mod f(x) reduction. Computation of A ■ Bi can be performed using direct 

Boolean AND and XOR operations at bit level.   However, the computation of mod f(x) 

operation is highly dependent on the primitive polynomial f(x) and is much more involved. 

An algorithm for simplifying this mod f(x) operation is provided. 
fc-i 

Theorem 1. Assume f(x) = xm + xk + ^fox1. For t < m - 1 - k, the coordinates of 
x=0 

am+t can be obtained by the following equation, 

am+t mod f(x)    = ( am mod f(x))- a1 

= (ak + X>Ö-oA (69) 
i=0 

Theorem 2. For digit-size D < m — k, the mod f(x) reduction operation for digit-serial 

multiplication with digit-size D can be performed as follows: 

k-i 

am+t mod f(x)  =  {ak + J£/fi<xi)-atJort<D-l. (70) 
i=0 

Therefore, according to Theorem 2, when D < m — k, the mod f(x) operation in step 2 

and 4 of Algorithm 1 and step 2 of algorithm 2 can be accomplished by simply taking the 

higher order digits (HD, from bit m to bit m + D — 1) of the partial product, multiplying 
A;-l 

it by (ak + ^2fi(xl) and adding it to lower order digits (LD, from bit 0 to bit m — 1) of the 
i=0 

partial product. Then the highest degree of the result will be guaranteed to be less than m. 

It needs to be pointed out that for some finite field GF(2m) over which primitive poly- 

nomial of the form xm + x + 1 exists, the digit-size D can vary from 1 to m instead of from 

1 to m — 1. 
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Table 25: List of Optimal polynomials over GF(2m) 
finite field prim, polynomial feasible digit-size 
m=2 f(x) =X2 +X + 1 1<D<2 
ra=3 f(x) = XS +X + 1 1<D<3 
ra=4 f(x) = xA + x + 1 1<D<4 
ra=5 f(x) = xb + x2 + 1 1<D<3 
m=6 f(x) = xti+x + l 1 <D<6 
m=7 f(x) =x7 +X + 1 1 <D<7 
m=8 f(x) = x8 + xA + x6 + x2 + 1 1 <D<4 
m=9 f(x) = x9 + x + 1 1<D<9 

The optimal primitive polynomials over GF(2m), for 2 < m < 9, are given in Table 25. 

Optimal primitive polynomials are chosen keeping in mind the simplicity of architectures 

and flexibilities on feasible digit-sizes when the proposed algorithms are used. 

6.4.2.2    Multiplier over GF(28) 

Let f(x) = x8 + xA + x3 + x2 +1 be the primitive polynomial over GF(2S) and a be the root 

of f(x). A multiplier has been derived using the proposed LSD first algorithm. The overall 

structure as well as basic cells of GF(28) multiplier are shown in Fig. 44. Here the multiplier 

is in digit-parallel form, from which the corresponding digit-serial architecture can be easily 

derived. 

It is worth noting that more substructure sharing can be achieved when the mod f(x) 

operation is performed in the proposed way, which is illustrated by the shaded regions in 

Fig. 44. 

This multiplier has been compared with the existing semi-systolic architecture [105] under 

the assumption that both multipliers are over GF(28) with primitive polynomial f(x) = 

x8 + x4 + x3 + x2 + 1. A hierarchical energy analysis tool HEAT [122] was used to compute 

the average power for the two multipliers (with and without pipelining). It was found that the 

best case for semi-systolic multiplier over GF{28) was the one with 4-bit level pipelining, the 

best case for proposed multiplier was the one without pipelining. Therefore, the comparison 

was made between the two multipliers for both non-pipelining and 4-bit pipelining cases. All 

results are summarized in Table 26. 
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Table 26: Comparison between proposed multiplier and semi-systolic multiplier for m=8 
Semi-systolic [105] Proposed 

Properties 4-bit pipe. non pipe. 4-bit pipe. non pipe. 
Resources 64 2-input AND 

80 2-input XOR 
24 latches 

64 2-input AND 
80 2-input XOR 
8 latches 

64 2-input AND 
73 2-input XOR 
38 latches 

64 2-input AND 
73 2-input XOR 
8 latches 

# trans. 1280 1024 1448 968 
Latency 2 elk cycles 1 elk cycles 3 elk cycles 1 elk cycles 
Critical Path 1 2-input AND 

4 2-input XOR 
1 2-input AND 
8 2-input XOR 

1 2-input AND 
3 2-input XOR 

1 2-input AND 
7 2-input XOR 

Power Consump. (ßW) 889 1198 708.18 578.56 

From Table 26 we can conclude that the proposed multiplier without pipelining gives the 

best overall performance. 

7    Order-Configurable, Power Efficient FIR Filters 

With the recent explosion of portable and wireless real-time, digital signal processing ap- 

plications, the demand for low-power circuits has increased tremendously [123]-[125]. This 

demand has been satisfied by utilizing ASICs; however, ASICs allow for very little reconfig- 

urability. Another new trend is the need to minimize the design cycle time. Therefore many 

programmable logic devices (PLDs) (e.g., field-programmable gate arrays) are being utilized 

for prototyping and even production designs [126]. The main disadvantage of these PLDs is 

that they suffer from slow performance because their architectures have been optimized for 

random logic and not for digital signal processing implementations. In this paper, a solu- 

tion for the implementation of high-speed, low-power, and order-configurable finite impulse 

response (FIR) filters is presented. This architecture was designed by applying the folding 

and the retiming transformations and the filter order can vary from 1 to 31 using one chip. 

Multiple chips can be cascaded to achieve higher order FIR filters. 

This new architecture consists of two parts: a configurable processor array (CPA) [127] 

and a phase locked loop (PLL). The CPA contains the multiply-add functional units and the 

PLL is designed to automatically vary the internal voltage to match the desired throughput 

rate and minimize the peak power dissipated by the CPA. We utilize a novel programmable 

divider and a voltage level shifter in conjunction with the clock to control the internal supply 
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voltage. The CPA portion contains folded multiply-add (FMA) units which operate in two 

phases: the configuration phase where the processor array is programmed for a specific 

sample-rate and filter-order, and the execution phase where the processor array performs 

the desired filtering operation. We also implemented novel programmable subcircuits that 

provides the order configurability of the architecture. This design has been implemented 

using Mentor Graphics tools and 1.2/xm CMOS technology. 

In section 7.1, we briefly describe how the CPA is derived and the design parameters. In 

section 7.2, the design of the CPA components are described in more detail and section 7.3 

describes the PLL components. Simulation results are provided in section 7.4 to demonstrate 

the effectiveness of the design and the power savings. 

7.1    Background 

Consider the transpose-form architecture of a 6-tap FIR filter that realizes the function 

y(n) = a0x(n) + <nx(n - 1) + a2x{n - 2) + a3x{n - 3) + a4x(n - 4) + a5x(n - 5). 

If we implement this 6-tap filter using 2 multiply-add functional units, which corresponds 

to using a folding factor of 3 [128], (i.e., 3 multiply-add operations are folded to the same 

functional unit), we will have a folded architecture shown in Fig. 45. This architecture 

consists of folded multiply-add units (FMA). The inputs and outputs (x(n) and y(n)) to 

each FMA will hold the same sample data for three clock cycles before changing to the next 

sample.   To completely pipeline the folded architecture, additional delays are introduced 

x(n) 

y(n) 

Figure 45: The folded architecture of the 6-tap FIR filter (folding factor = 3). 

at the input (x(n)) by using the retiming transformation [129] along with pipelining. This 
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modified structure is now periodic with a period of three clock cycles (or 3-periodic). This 

technique can be applied to any JV-tap FIR filter for any folding factor, p. 

To achieve programmability and the CPA architecture, we convert the fixed number of 

registers in Fig. 45 into programmable delays that are constrained by a maximum folding 

factor pmax as shown in Fig. 46. To implement an iV-tap filter using this architecture, a 

total of M (where M = \N/p\) FMA modules are required. This CPA architecture is a 

periodic system with period p; therefore it is designed to produce filter outputs from module 

FMA0 in clock cycles (t mod p) = 0 (where t = time in clock cycles) and hold it for p cycles. 

Note that mux4 in Fig. 46 is only required for module FMA0 to hold the filter output 

data for p clock cycles and is redundant in the other FMAj modules (j ^ 0). These other 

multiplexers can be replaced by a single delay along with sharing of the (p-1) registers in the 

feedback accumulation path. The switching times of all of the programmable multiplexers 

are summarized in Table 27. 

x(n) 

y(n) 

i^ZP. 

% Accumulation Pith 

( (•• (~ 

5?M+) 
Accumulation Path 

I L__ i   mi 

FMA„., iff 
Accumulation Path 

Figure 46: A configurable processor array (CPA) for N-tap FIR filters which is 
p-periodic. 

mux# mux definition 
1 
2 
3 
4 

at in clock cycle ((p - l)(j + 1) + i) mod p 
/ in clock cycle ((p - l)(j + 1) - 1) mod p 
/ in clock cycle ((p - l)(j + 1) - 1) mod p 

/ in clock cycle ((p - l)(j + 1)) mod p 

Table 27: Multiplexer definitions 

Before implementing this general structure, we had to set values for Nmax and pmax. 

We chose to set Nmax (maximum number of taps) to 32 because an FIR filter will provide 
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good performance for filter lengths around 32. We set pmax (maximum folding factor) to 

8 because we wanted pmax to be a power of 2 and desired greater flexibility with minimal 

control overhead. With Nmax = 32 and pmax = 8, a total of 4 FMA modules needed to be 

integrated onto a single chip. 

7.2    Configurable Processor Array 

The 8-bit parallel multiplier is a key part of the CPA module because it determines the 

critical path of the system. We chose to utilize the Baugh-Wooley algorithm for the multiplier 

because the control overhead is smaller than other algorithms (e.g., Booth recoding) and the 

full-adders are not wasted on sign extensions. This algorithm generates a matrix of partial 

product bits and a fast multi-operand adder [130] was employed to accumulate these partial 

products. To minimize the critical path in the accumulation path, we used the Wallace tree 

approach [131]. In the CPA design of Fig. 46, we see that the feedback accumulation path 

requires p—l synchronization registers. Because p is a programmable parameter, p-1 can 

range from 0 to 7 (pmax - 1), we implemented them as a programmable delay line as shown 

in Fig. 47. Each delay line contains seven 8-bit registers, seven 8-bit multiplexers, and one 

control unit. The control unit is a simple decoder, that converts p into seven control bits 

and each control bit directs the data through or around a delay. 

P<2:0) [ p<2:0> decode<6:0) 

Control 

din(7:0) £>- 

«o 
8 bit reg 8 bit reg 

8 bit mux 

8 bit reg 

Figure 47: p—l programmable delay line. 

The multiplexers mux2, mux3 and mux4 shown in Fig. 46 are 2-to-l p-periodic multi- 

plexers. Their functions are to select input I in one of p clock-cycles. These multiplexers use 

a 3-bit ([log2(pmai)]-bit) binary counter with asynchronous reset and synchronous parallel 

load. In addition, two 3-bit registers and a comparator are used in the control circuitry 

of each multiplexer.  One register holds p and the second holds a programmed clock cycle 
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value ranging from 0 to p - 1. When the counter output equals the held clock cycle value, 

the controller allows the data on / to pass to the output. The final multiplexer in Fig. 46, 

muxl, is a programmable p-to-1 p-periodic multiplexer which consists of one 8-bit 8-to-l 

multiplexer and one control unit. At each counter state one of p control lines will be high 

to activate the p-to-1 multiplexer. 

7.3    Phase Locked Loop 

Reducing the supply voltage of VLSI chips is commonly used to save power; however, it also 

slows down the critical path of the circuit. If the supply voltage is reduced too much, the 

critical path will become too slow to assure correct functionality of the design. Therefore we 

designed a phase locked loop (PLL) circuit that automatically controls the internal supply 

voltage to provide the lowest voltage allowable while still achieving the throughput required 

for the application [132]. The PLL consists of a phase detector, a charge pump with a 

loop filter, a voltage controlled oscillator (VCO), a programmable divider, and a voltage 

level shifter. All of these components form a feedback circuit that automatically adjusts the 

voltage level as required by the programmed parameters and the clock speed. 

The schematic of the programmable divider used in the PLL is shown in Fig. 48. To 

achieve a 50% duty cycle, we had to accommodate three possible cases of p. If p is 1, the 

input clock simply passes through the divider without any change. For even p, the divider 

toggles its output every p/2 input clock cycles by using a programmable counter. When p 

is odd (p > 1), the divider must alter the output every (p - l)/2 + 1/2 input clock cycles. 

This means the output may toggle at the rising edge and falling edge of the input clock. 

To detect the edge where the divider should toggle its output, we utilize two programmable 

counters; one to detect rising edges, and the other to detect falling edges. These counters 

generate a series of pulses representing edges and an OR gate combines them into a single 

pulse. Finally the Toggle component alters the output according to the pulses generated by 

the OR gate. The two multiplexers in Fig. 48 select the appropriate clock output from the 

three cases depending on the value of p. 

The function of the voltage level shifter (VLS) is to raise the output voltage of the loop 

filter to a usable level in the CPA. By sizing transistors in the VLS, we can adjust the 

96 



elk       [Z> 
pl(2:0) O 

Figure 48: programmable divider 

amount of voltage that will be shifted (known as the voltage shift level). However, the power 

consumption of the voltage level shifter will increase with an increase in the the voltage 

shift level. So there is a tradeoff between power consumption and the voltage shift level. 

Our experiments have shown that a shift of 0.6V provided enough internal voltage to safely 

operate the CPA within the design specifications while minimizing the power consumption. 

7.4    Simulation 

Using Mentor Graphics tools, simulations determined the critical path of the design to be 

7ns at the schematic level which means that it is safe to operate the architecture up to 100 

MHz. The CPA was designed to be operated with sample rates in the range of 10MHz to 

100MHz, which corresponds to an internal clock rate of 1.125MHz (with p = 8) to 100MHz 

(with p = 1).  This range of frequencies corresponds to an internal power supply range of 

4.5V to 2.0V. Efficient power consumption is one of the important features of our design 

and Table 28 shows the power consumptions in mW for each CPA component at different 

frequencies and power supplies. From Table 28, we can see that at 100MHz, the power 
consumption of the CPA without the PLL and using a 5V supply voltage will consume 

1101.48mW. By utilizing the PLL supply voltage for 100MHz (4.5V) the power consumption 

can be reduced to 863.32mW. At 10MHz, we can save 95.37mW by using the PLL supply 

voltage automatically generated for 10MHz verses a 5V supply.   Of course the PLL will 

consume some power of its own and results of power consumption simulations for the various 

components of the PLL are listed in Table 29. From Table 29, we can see that even if we 

include the power consumption of the PLL, we will still save 210.06mW at 100MHz, and 
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Component 5V, 100MHz 4.5V, 100MHz 5V, 10MHz 2.0V, 10MHz 

multiplier 140.6 112.5 14.23 1.98 
pmux(p-l) 5.17 3.85 1.14 0.050 

adder 18.8 16.52 2.18 0.28 
pldelay 60 43.2 6.03 0.77 

pmux(2-l) 11.6 9.5 0.65 0.063 
1 delay 8 5.63 0.9 0.099 

FIR(digital) 1101.48 863.32 109.24 13.87 

Table 28: Power consumption for digital parts of FIR filter in mW 

81.79mW at 10MHz. 

Component phase detector 
charge pump 

loop filter VCO level shifter divider total 

100MHz 8.3 7.55 14.875 0.9 1.345 28.1 
10MHz 2.68 0.355 3.335 0.999 1.34 13.58 

Table 29: Power consumption for PLL parts in mW 
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